淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1901201022010400
中文論文名稱 單位購買價格變動下零售商最適訂購策略之研究
英文論文名稱 THE STUDY OF RETAILER OPTIMAL ORDERING POLICY UNDER UNIT PURCHASING PRICE CHANGE
校院名稱 淡江大學
系所名稱(中) 管理科學研究所博士班
系所名稱(英) Graduate Institute of Management Science
學年度 98
學期 1
出版年 99
研究生中文姓名 顏秀鳳
研究生英文姓名 Hsiu-Feng Yen
學號 891560053
學位類別 博士
語文別 中文
口試日期 2010-01-09
論文頁數 112頁
口試委員 指導教授-歐陽良裕
指導教授-吳坤山
委員-林進財
委員-陳茂生
委員-鄧進財
委員-陳山火
委員-曹銳勤
委員-張春桃
中文關鍵字 存貨  瞬間價格折扣  倉儲容量限制  前置時間  預告價格上漲  退化 
英文關鍵字 inventory  temporary price discount  warehouse capacity limited  lead time  announcement price increase  deteriorating item 
學科別分類
中文摘要 論文提要內容:
傳統經濟訂購量的存貨模式中,有一假設為單位購買成本不變。然而,在現實生活裡,供應商常因某些內外在環境因素而調整其售價;此時,零售商可能會做某些因應,改變原來的訂購策略。譬如供應商提供瞬間價格折扣的優惠,則零售商除了決定是否大量訂購外,亦應考慮其自有倉庫是否足夠容納額外訂購的數量。進一步,因大量訂購,致使零售商的前置時間拉長,因而可能造成缺貨的現象。除外,在傳統的經濟訂購量模式中,通常都假設貨品可以無限期儲存,然而在真實環境中,某些貨品可能因儲存時間過久而產生腐壞、過期、揮發等現象而造成存貨的損失。由於貨品的退化會產生額外的成本,若不考慮其退化性則可能導致錯誤的存貨策略而蒙受更大的損失。
本論文探討單位購買價格變動對零售商最適訂購策略的影響,分別考慮零售商自有倉庫容量有限制、訂購量與前置時間長度有關及貨品產生退化等情況。第一章為緒論,包括研究動機與目的、相關文獻探討和本論文研究架構。第二章則是討論供應商提供瞬間價格折扣且零售商自有倉庫容量有限制之存貨模式。第三章延續第二章的概念,探討在供應商提供瞬間價格折扣且零售商前置時間與訂購量有關之存貨模式,第四章討論供應商預告單位價格將上漲且上漲前零售商訂購數量有限制之退化性貨品的存貨模式。第五章為結論,對本論文各章所建構的存貨模式作一總結,同時提出未來的研究方向。
英文摘要 Abstract:
In the traditional Economic Order Quantity model, it is assumed that the unit purchasing price is constant. However, the suppliers may adjust the unit price due to some factors in the real world that may affect the retailers to change the ordering policy. When the retailers decide to make large special order quantities, they need to consider if the warehouse capacity is enough or not. Furthermore, the length of lead time is longer than before. This may lead to an inventory shortage cost. In addition, the physical goods will deteriorate in daily life such as medicine, volatile liquids, fruits, and vegetables. Consequently, the loss must be taken into account while developing the inventory models for such goods.
The paper investigates the effect of unit purchasing price change on retailer’s optimal ordering quantity policy. We formulate the inventory model under the warehouse capacity limited, the length of lead time linked to ordering quantity, limited ordering quantity and deteriorating items. Chapter 1 covers the motivation and objectives of this research. Meanwhile, we also survey the related literature and provide a research framework. In Chapter 2, we establish an optimal ordering policy model in response to a temporary sales price based on limited capacity of the retailer’s warehouse. Chapter 3 develops an inventory model with temporary price discount when lead time is linked to the order quantity. In Chapter 4, we explore the retailer’s replenishment policy based on limited special order quantities and assume the rate of decay of goods is constant. In this dissertation, we develop several algorithms to find the optimal ordering policies and provide numerical examples to illustrate the solution procedure. Moreover, this research also conducts a sensitivity analysis with the parameters of the models. Finally, Chapter 5 provides the conclusions of this research and topics for future research.
論文目次 目錄
頁次
表目錄 V
圖目錄 VI
使用符號一覽表 VII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻探討 3
1.2.1 瞬間價格折扣 3
1.2.2 倉儲容量限制 5
1.2.3 前置時間 7
1.2.4 預告價格上漲 9
1.2.5 退化性貨品 10
1.3 本文結構 12
第二章 瞬間價格折扣且自有倉庫容量有限制之最適訂購策略 14
2.1 前言 14
2.2 符號說明及假設 16
2.3 模式的建立 17
2.3.1瞬間價格折扣的時間點恰巧發生在零售商補貨的時間點上 18
2.3.2瞬間價格折扣的時間點不是發生在補貨時間點上 23
2.4 模式的求解 29
2.4.1瞬間價格折扣的時間點恰巧發生在零售商補貨的時間點上 29
2.4.2瞬間價格折扣的時間點不是發生在補貨時間點上 33
2.5 數值範例及敏感度分析 39
2.6 小結 43
第三章 瞬間價格折扣且前置時間與訂購量有關之最適訂購策略 44
3.1 前言 44
3.2 符號說明及假設 45
3.3 模式的建立 47
3.3.1瞬間價格折扣的時間點恰巧發生在請購時間點上(即 ) 47
3.3.2瞬間價格折扣的時間點不是發生在請購時間點上(即 ) 50
3.4 模式的求解 55
3.4.1瞬間價格折扣的時間點恰巧發生在請購時間點上(即 ) 55
3.4.2瞬間價格折扣的時間點不是發生在請購時間點上(即 ) 56
3.5 數值範例與敏感度分析 62
3.6 小結 67
第四章 單位購買價格將上漲且上漲前限制訂購數量的退化性貨品之最適訂購策略 68
4.1 前言 68
4.2 符號說明及假設 70
4.3 模式的建立 73
4.3.1 零售商擬採取大量特別訂購的時間點恰巧發生在存貨水準降至0時的情形 75
4.3.2 零售商擬採取大量特別訂購的時間點上還有存貨的情形 78
4.4 模式的求解 81
4.4.1零售商擬採取大量特別訂購的時間點恰巧發生在存貨水準降至0時的情形 81
4.4.2零售商擬採取大量特別訂購的時間點上還有存貨的情形 83
4.5 數值範例及敏感度分析 87
4.6 小結 92
第五章 結論 94
5.1 主要研究成果 94
5.2 未來研究方向 96
附錄一 99
附錄二 100
附錄三 101
參考文獻 102

表目錄
頁次
表21 不同的W 值下,瞬間價格折扣發生在補貨點上之最適解
40
表22 不同的W 值下,瞬間價格折扣的時間點不是發生在補貨
時間點上之最適解(q = 200) 41
表23 例題22 中不同參數值改變對最適解的影響 42
表31 在不同P 和tr 值下的最適解 64
表32 例題32 中不同參數值改變對最適解的影響 66
表41 在不同的M 值及k 值下,零售商擬採取大量特別訂購的
時間點恰巧發生在存貨水準降至0 時的最適解88
表42 在不同的M 值及k 值下,零售商擬採取大量特別訂購的
時間點上還有存貨時的最適解89
表43 例題43 中不同參數值改變對最適解的影響 91

圖目錄
頁次
圖1-1 本文架構流程圖 13
圖2-1 瞬間價格折扣的時間點發生在補貨的時間點之特別訂購
策略與正常訂購策略示意圖19
圖2-2 瞬間價格折扣的時間點不是發生在補貨時間點上之特別
訂購策略與正常訂購策略示意圖24
圖3-1 瞬間價格折扣時間點發生在請購時間點上(即ts = tr )之特
別訂購策略與正常訂購策略示意圖49
圖3-2 瞬間價格折扣時間點不是發生在請購時間點上(即
ts ≠ tr )之特別訂購策略與正常訂購策略示意圖52
圖4-1 零售商擬採取大量特別訂購的時間點恰巧發生在存貨水
準降至0 以及不擬採取大量訂購的存貨系統示意圖77
圖4-2 零售商擬採取大量特別訂購的時間點發生在庫存還有q
數量以及不擬採取大量訂購的存貨系統示意圖79

參考文獻 參考文獻
[1] Abad, P.L. (1997). Optimal policy for a reseller when the supplier offers a temporary reduction in price. Decision Sciences 28, 637-653.
[2] Abad, P.L. (2007). Buyer’s response to a temporary price reduction incorporating freight costs. European Journal of Operational Research 182, 1073-1083.
[3] Aggarwal, S.P. & Jaggi, C.K., (1989). Ordering policy for decaying inventory. International Journal of Systems Science 20, 151-155.
[4] Arcelus, F.J., Shah Nita H. and Srinivasan, G. (2003). Retailer’s pricing, credit and inventory policies for deteriorating items in response to temporary price/credit incentives. International Journal of Production Economics 81-82, 153-162.
[5] Ardalan, A. (1988). Optimal ordering policies in response to a sale. IIE Transactions 20, 292-294.
[6] Ardalan, A. (1991). Combined optimal price and optimal inventory replenishment policies when a sale results in increase in demand. Computers and Operations Research 18, 721–730.
[7] Ardalan, A. (1995). A comparative analysis of approaches for determining optimal price and order quantity when a sale increase demand. European Journal of Operational Research 84, 416-430.
[8] Aull-Hyde, R.L. (1996). A backlog inventory model during restricted sale periods. Journal of the Operational Research Society 47, 1192-1200.
[9] Barker, R.C. (1976). Inventory policy for items on sale during regular replenishment. Production and Inventory Management 17, 55-64.
[10] Ben-Daya, M. and Hariga, M.(2003). Lead-time reduction in a stochastic inventory system with learning consideration. International Journal Production Research 41, 571-579.
[11] Ben-Daya, M. and Raouf, A. (1994). Inventory models involving lead time as decision variable. Journal of the Operational Research Society 45, 579–582.
[12] Benkherouf, L. (1997). A deterministic order level inventory model for deteriorating item with two storage facilities. International Journal of Production economics 48, 167-175.
[13] Bhaba, R. S. and Mahmood, A. K. (2006). Optimal ordering policies in response to a discount offer. International Journal of Production Economics 100, 195-211.
[14] Bhavin, J.S. (2005). EOQ model for time-dependent deterioration rate with a temporary price discount. Asia-Pacific Journal of Operational Research 22, 479-485.
[15] Bhunia, A.K. and Maiti, M. (1994). A two warehouse inventory model for a linear trend in demand. Opsearch 31, 318-329.
[16] Bhunia, A.K. and Maiti, M. (1998). A two warehouse inventory model for deteriorating items with a linear trend in demand and shortages. Journal of the Operational Research Society 49, 287-292.
[17] Chandra, C. and Grabis, J. (2008). Inventory management with variable lead-time dependent procurement cost. Omega 36, 877-887.
[18] Chang, C.T. and Lo, T.Y. (2009). On the inventory model with continuous and discrete lead time, backorders and lost sales. Applied Mathematical Modelling 33, 2196-2206.
[19] Chang, H.J. and Dye, C.Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of the Operational Research Society 50, 1176-1182.
[20] Chang, H.J. and Dye, C.Y. (2000). An EOQ model with deteriorating items in response to a temporary sale price. Production Planning & Control 11, 464-473.
[21] Chang, H.J., Teng, J.T., Ouyang, L.Y. and Dye, C.Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research 168, 51-64.
[22] Chung, K.J. and Huang, T.S. (2007). The optimal retailer’s ordering policies for deteriorating items with limited storage capacity under trade credit financing. International Journal of Production Economics 106, 127-145.
[23] Cohen, M.A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistic Quarterly 24, 257-268.
[24] Covert, R.P. and Philip, G.C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions 5, 323-326.
[25] Davis, R.A. and Gaither, N. (1985). Optimal ordering policies under conditions of extended payment privileges. Management Science 31, 499-509.
[26] Dave, U. (1988). On the EOQ models with two levels of shortage. Opsearch 25, 190-196.
[27] Dye, C.Y., Chang, H.J. and Teng, J.T. (2006). A deteriorating inventory model with time-varying demand and shortage- dependent partial backlogging. European Journal of Operational Research 172, 417-429.
[28] Dye, C.Y., Chang, H.J. and Wu, C.H. (2007). Purchase-inventory decision models for deteriorating items with a temporary sale price. International Journal of Information and Management Sciences 18, 17-35.
[29] Ghare, P.M. and Schrader, G.H. (1963). A model for exponentially decaying inventory system. Journal of Industrial Engineering 163, 238-243.
[30] Ghosh, A.K. (2003). On some inventory models involving shortages under an announced price increase. International Journal of Systems Science 34, 129-137.
[31] Goswami, A. and Chaudhuri, K.S. (1992). An economic order quantity model for items with two levels of storage for a linear trend in demand. Journal of the Operational Research Society 43, 157-167.
[32] Goyal, S.K. (1979). A note on the paper: An inventory model with finite horizon and price changes. Journal of the Operational Research Society 30, 839-842.
[33] Goyal, S.K. (1990). Economic ordering policies during special discount periods for dynamic inventory problems under certainty. Engineering Costs and Production Economics 20, 101-104.
[34] Goyal, S.K. (1996). A comment on Martin’s: Note on an EOQ model with a temporary sale price. International Journal of Production Economics 43, 283-284.
[35] Goyal, S.K. and Bhatt, S.k. (1988). A generalized lot size ordering policy for price increases. Opsearch 25, 272-278.
[36] Goyal, S.K. and Giri, B.C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research 134, 1-16.
[37] Goyal, S.K., Srinivasan, G. and Arcelus, F.J. (1991). One time only incentives and inventory policies. European Journal of Operational Research 54, 1-6.
[38] Hadley, G. and Whitin, T.M. (1961). An optimal final inventory model. Management Science 7, 179-183.
[39] Hariga, M. and Ben-Daya, M. (1999). Some stochastic inventory models with deterministic variable lead time. European Journal of Operational Research 113, 42-51.
[40] Harris, F.W. (1915). What quantity to make at once. The Library of Factory Management, Vol. V. Operation and Costs, A.W. Shaw Company, Chicago, 47-52.
[41] Hartley, V.R. (1976). Operations Research –A Managerial Emphasis. Chatper 12. Good Year Publishing Company, California, 315-317.
[42] Huang, W. and Kulkarni, V.G. (2003). Optimal EOQ for announced price increases in infinite horizon. Operations Research 51, 336-339.
[43] Huang, Y.F. (2006). An inventory model under two levels of trade credit and limited storage space derived without derivatives. Applied Mathematical Modelling 30, 418-436.
[44] Jordan, P.C. (1987). Purchasing decisions considering future price increases: An empirical approach. Journal of Purchasing and Materials Management 23, 25-30.
[45] Kar, S., Bhumia, A.K. and Maiti, M. (2001). Deterministic inventory model with two levels of storage, a linear trend in demand and a fixed time horizon. Computers & Operations Research 28, 1315-1331.
[46] Lan, S.P., Chu, P., Chung, K.J., Wan, W.J. and Lo, R. (1999). A simple method to locate the optimal solution of the inventory model with variable lead time. Computers & Operation Research 26, 599-605.
[47] Lee, C.C. and Ma, C.Y. (2000). Optimal inventory policy for deteriorating items with two-warehouse and time –dependent demands. Production Planning & Control 11, 689-696.
[48] Lee, W.C., Wu, J.W. and Lei, C.L. (2007). Computational algorithmic procedure for optimal inventory policy involving ordering cost reduction and back-order discounts when lead time demand is controllable. Applied Mathematics and Computation 189, 186-200.
[49] Lev, B., and Soyster, A.L. (1979). An inventory model with finite horizon and price changes. Journal of the Operational Research Society 30, 43-53.
[50] Lev, B. and Weiss, H.J., (1990). Inventory models with cost changes. Operations Research 38, 53-63.
[51] Lev, B., Weiss, H.J. and Soyster, A.L. (1981). Optimal ordering policies when anticipating parameter changes in EOQ systems. Naval Research Logistics Quarterly 28, 267-279.
[52] Liao, C.J. and Shyu, C.H. (1991). An analytical determination of lead time with normal demand. International Journal of Operations Production Management 11, 72–78.
[53] Markowski, E.P. (1986). EOQ modification for future price increases. Journal of Purchasing and Materials Management 22, 28-32.
[54] Markowski, E.P. (1990). Criteria for evaluating purchase quantity decisions in response to future price increases. European Journal of Operational Research 47, 364-370.
[55] Martin, G.E. (1994). Note on an EOQ model with a temporary sale price. International Journal of Production Economics 37, 241-243.
[56] Moon, I. and Choi, S. (1998). A note on lead time and distributional assumptions in continuous review inventory models. Computers & Operations Research 25, 1007–1012.
[57] Murdeshwar, T.M. and Sathe, Y.S. (1985). Some aspects of lot size model with two levels of storage. Opsearch 22, 255-262.
[58] Naddor, E. (1966). Inventory Systems. Wiley, New York, 96-102.
[59] Ouyang, L.Y. and Chang, H.C. (2001). The variable lead time for stochastic inventory model with a fuzzy backorder rate. Journal of the Operational Research Society of Japan 10, 81-98.
[60] Ouyang, L.Y. and Chuang, B.R. (1999). (Q, R, L) inventory model involving quantity discounts and a stochastic backorder rate. Production Planning and Control 10, 426-433.
[61] Ouyang, L.Y., Chuang, B.R. (2001). Mixture inventory model involving variable lead time and controllable backorder rate. Computers & Industrial Engineering 40, 339–348.
[62] Ouyang, L.Y. and Wu, K.S. (1997). Mixture inventory model involving variable lead time with a service level constraint. Computers & Operations Research 24, 875-882.
[63] Ouyang, L.Y. and Wu, K.S. (1998). A minimax distribution free procedure for mixed inventory model with variable lead time. International Journal of Production Economics 56-57, 511-516.
[64] Ouyang, L.Y. and Wu, K.S. (1999). Mixture inventory involving variable lead time and defective units. Journal of Statistics and Management Systems 2, 143–157.
[65] Ouyang, L.Y. and Yao, J.S. (2002). A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand. Computers & Operations Research 29, 471-487.
[66] Ouyang, L.Y., Yeh, N.C. and Wu, K.S. (1996). Mixture inventory model with backorders and lost sales for variable lead time. Journal of the Operational Research Society 47, 829–832.
[67] Pakkala, T.P.M. and Achary, K.K. (1992). A deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate. European Journal of Operational Research 57, 71-76.
[68] Pal, A.K., Bhunia, A.K. and Mukherjee, R.N. (2005). A marketing-oriented inventory model with three-component demand rate dependent on displayed stock level (DSL). Journal of the Operational Research Society 56, 113-118.
[69] Pal, A.K., Bhunia, A.K. and Mukherjee, R.N. (2006). Optimal lot size model for deteriorating items with demand rate dependent on displayed stock level (DSL) and partial backordering. European Journal of Operational Research 175, 977-991.
[70] Pan, C.-H.J. and Hsiao, Y.C. (2001). Inventory models with back-order discounts and variable lead time. International Journal Systems Science 32, 925-929.
[71] Pan, C.-H.J, Hsial, Y.C. and Lee, C.J. (2002). Inventory models with fixed and variable lead time crash costs considerations. Journal of the Operational Research Society 53, 1048-1053.
[72] Pan, C.-H.J., Lo, M.C. and Hsiao, Y.C. (2004). Optimal reorder point inventory models with variable lead time and backorder discount considerations. European Journal of Operational Research 158, 488-505.
[73] Papachristos, S. and Skouri, K. (2000). An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type–backlogging. Operations Research Letters 27, 175-184.
[74] Philip, G.C. (1974). A generalized EOQ model for items with Weibull distribution. AIIE Transactions 6,159-162.
[75] Raafat, F. (1991). Sruvey of literature on continuously deteriorating inventory. Journal of Operational Research Society 42, 27-37.
[76] Ray, J., Goswami, A. and Chaudhuri, K.S. (1998). On an inventory model with two levels of storage and stock-dependent demand rate. International Journal of Systems Science 29, 249-254.
[77] Sarker, B.R., Mukherjee, S. and Balan, C.V. (1997). An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics 48, 227-236.
[78] Sarma, K.V.S. (1983). A deterministic inventory model with two level of storage and an optimum release rule. Opsearch 20, 175-180.
[79] Sarma, K.V.S. (1987). A deterministic order level inventory model for deteriorating items with two storage facilities. European Journal of Operational Research 29, 70-73.
[80] Shah, Y.K. (1977). An order-level lot size inventory model for deteriorating items. AIIE Transactions 9, 108-112.
[81] Silver, E.A., Pyke, D.F. and Peterson, R. (1998). Inventory Management and Production Planning and Scheduling. Wiley, New York, 174-179.
[82] Taylor, S.G. and Bradley, C.E. (1985). Optimal ordering strategies for announced price increases. Operations Research 33, 312-325.
[83] Teng, J.T., Chen, J. and Goyal S.K. (2009). A comprehensive note on: An inventory model under two levels of trade credit and limited storage space derived without derivatives. Applied Mathematical Modelling 33, 4388-4396.
[84] Tersine, R.J. (1982). Principles of inventory and Materials management. Ed.2, North Holland, New York, 89-91.
[85] Tersine, R.J. (1994). Principles of Inventory and Materials management. Ed.4, North Holland, New York, 113-117.
[86] Tersine, R.J. and Barman, S. (1995). Economic purchasing strategies for temporary price discounts. European Journal of Operational Research 80, 328-343.
[87] Tersine, R.J. and Gengler, M. (1982). Simplified forward buying with price changes. Journal of Purchasing and Materials Management 18, 27-32.
[88] Tersine, R.J., and Grasso, E.T. (1978). Forward buying in response to announced price increases. Journal of Purchasing and Materials Management 14, 20-22.
[89] Tersine, R.J. and Price, R.L. (1981). Temporary price discounts and EOQ. Journal of Purchasing and Materials Management 17, 23-27.
[90] Tersine, R.J. and Schwarzkopf, A.B. (1989). Optimal stock replenishment strategies in response to a temporary price reduction. Journal of Business Logistics 10, 123-145.
[91] Wang, S.P. (2002). An inventory replenishment policy for deteriorating items with shortages and partial backlogging. Computers & Operations Research 29, 2043-2051.
[92] Wee, H.M. (1992). Perishable commodities inventory policy with partial backordering. Chung Yuan Journal 12, 191-198.
[93] Wee, H.M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers & Operations Research 22, 345-356.
[94] Wee, H.M. and Yu, J. (1997). A deteriorating inventory model with a temporary price discount. International Journal of Production Economics 53, 81-90.
[95] Wilson, R.H. (1934). A scientific routine for stock control. Harvard Business Review 13, 116–128.
[96] Wu, K.S. and Ouyang, L.Y. (2000). Defective units in (Q, r, L) inventory model with sub-lot sampling inspection. Production Planning and Control 11, 179-186.
[97] Wu, K.S. and Ouyang, L.Y. (2001). (Q, r, L) inventory model with defective items. Computers and Industrial Engineering 11, 173-185.
[98] Yanasse, H.H. (1990). EOQ systems: The case of an increase in purchase cost. Journal of the Operational Research Society 41, 633-637.
[99] Yang, H.L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research 157, 344-356.
[100] Yang, H.L. (2005). A comparison among various partial backlogging inventory lot-size models for deteriorating items on the basis of maximum profit. International Journal of Production Economics 96, 119-128.
[101] Yang, H.L. (2006). Two-warehouse partial backlogging inventory models for deteriorating items under inflation. International Journal of Production Economics 103, 362-370.
[102] Yang, G., Ronald, R.J. and Chu, P. (2005). Inventory models with variable lead time and present value. European Journal of Operational Research 164, 358-366.
[103] Zhou, Y.W. & Lau, H.S. (2000). An economic lot-size model for deteriorating items with lot-size dependent replenishment cost and time-varying demand. Applied Mathematical Modelling 24, 761-770.
[104] Zhou, Y.W. (2003). A multi-warehouse inventory model for items with time-varying demand and shortages. Computers and Operations Research 30, 2115-2134.
[105] Zhou, Y.W. and Yang, S.L. (2005). A two-warehouse inventory model for items with stock-level-dependent rate. International Journal of Production Economics 95, 215-228.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-01-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-01-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信