淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1808201411264000
中文論文名稱 冪次流體流動於非對稱壁溫平板型熱交換器之格拉茲問題研究
英文論文名稱 Heat Transfer Enhancement of Power-Law Fluids in a Parallel-Plate Channel for Improved Device Performance under Asymmetric Wall Temperatures
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 林承毅
研究生英文姓名 Cheng-yi Lin
學號 601400640
學位類別 碩士
語文別 中文
口試日期 2014-07-21
論文頁數 178頁
口試委員 指導教授-何啟東
指導教授-林國賡
委員-凃志偉
委員-張煖
中文關鍵字 冪次流體  非對稱壁溫  平行板  效率改善  共軛格拉茲問題 
英文關鍵字 Power-law fluids  Asymmetric wall temperatures  Parallel-plate heat exchangers  Conjugated Graetz problem  Performance improvement 
學科別分類
中文摘要 本研究使用冪次流體為工作流體,探討一個具迴流之非對稱固定壁溫度二行程平板式熱交換器,改變其上下板溫度比例、格拉茲數與隔板位置以獲得最有效率之熱傳效果。此熱傳系統之統制方程式屬於共軛格拉茲問題 (conjugated Graetz problem),本研究應用分離變數法、重疊原理 (superposition)及正交展開法(orthogonal expansion technique)求其解析解,求得於壁固定溫度比例下,兩平板間流體的溫度分佈與平均納塞數 (average Nusselt number)。此外,亦探討改變冪次定律指數、不同壁溫度比例、迴流比值、隔板位置和迴流型式等參數下的熱傳現象之改善效率,並與單行程熱交換器作比較。結果顯示,本研究之實驗數據與理論模擬結果趨勢相符合,且可發現預混效應與滯留時間為影響熱傳效率之主要因素,並可發現冪次指數愈小的流體所獲得出口溫度較低。
英文摘要 The conjugated Graetz problem of a double-pass parallel-plate heat exchanger under asymmetric wall temperatures improvement is investigated theoretically and experimentally to enhance the device performace improvement. The theoretical mathematical model is solved analytically using the separation of variables, superposition principle and an orthogonal expansion technique in extended power series. The analytical predictions show that the power-law fluids in such a double-pass operation results in the significant heat-transfer efficiency improvement as compared with those in an open conduit (without an impermeable resistless sheet inserted), especially when the double-pass device was operated in a larger Graetz number. The results show that the good agreement between the experimental results and theoretical prediction is obtained. The effects of the ratio of top and bottom wall temperatures, impermeable-sheet position, recycle ratio and power consumption increment for power-law fluids have also been presented.
論文目次 中文摘要......................................................................................................I
英文摘要.....................................................................................................II
目錄...............................................................................................III
圖目錄...............................................................................................V
表目錄.....................................................................................................XIII
符號說明................................................................................................XIV
第一章 緒論................................................................................................1
1.1 前言................................................................................................1
1.2 迴流效應對系統之影響................................................................2
1.3 研究動機與目的............................................................................3
1.4 研究架構........................................................................................4
第二章 文獻回顧........................................................................................5
2.1 文獻回顧........................................................................................5
2.2 格拉茲問題....................................................................................7
第三章 基本理論......................................................................................10
3.1 二行程無迴流模型之理論分析..............................................17
3.2 管末端出口迴流模型之理論分析..............................................24
3.3 出口迴流至末端模型之理論分析..............................................30
3.4 末端迴流至入口模型之理論分析..............................................36
3.5 出口迴流至入口模型之理論分析..............................................43
3.6 平均納塞數及熱傳導效率..........................................................49
3.7 能量消耗增益率..........................................................................51
第四章 實驗分析......................................................................................55
4.1 冪次流體溶液配製......................................................................55
4.2 流變儀操作..................................................................................55
4.3 物理性質檢測..............................................................................57
4.4 實驗裝置說明..............................................................................60
4.5 實驗步驟......................................................................................63
第五章 結果與討論..................................................................................65
5.1 二行程無迴流模型之結果討論..................................................70
5.2 管末端出口迴流模型之結果討論..............................................85
5.3 出口迴流至管末端模型之結果討論........................................100
5.4 管末端迴流至入口模型之結果討論........................................116
5.5 出口迴流至入口模型之結果討論............................................130
5.6 實驗結果與討論........................................................................144
第六章 結論與建議................................................................................148
6.1 二行程無迴流模型....................................................................148
6.2 管末端出口迴流模型................................................................148
6.3 出口迴流至管末端模型............................................................149
6.4 管末端迴流至入口模型............................................................149
6.5 出口迴流至入口模型................................................................150
6.6 五種模型之比較........................................................................150
6.7 未來的研究方向........................................................................151
參考文獻..........................................................................153
附錄(一)冪次流體速度分佈式...............................................................160
附錄(二)正交性質...................................................................................166
附錄(三)積分公式證明...........................................................................169
附錄(四)單行程之理論分析...................................................................173
附錄(五)五次方多項式展開法...............................................................178


圖目錄
圖(3.1.1) 無迴流之二行程熱交換系統……………………………...20
圖(3.2.1) 管末端出口迴流之二行程熱交換系統…………………...26
圖(3.3.1) 出口迴流之二行程熱交換系統…………………………...32
圖(3.4.1) 管末端迴流至入口之二行程熱交換系統………………...38
圖(3.5.1) 出口迴流至入口之二行程熱交換系統…………………...45
圖(4.2.1) 黏度隨剪率變化圖形……………………………………...56
圖(4.3.1) 瑞典Hot Disk TPS 2500[61]………….......………….58
圖(4.3.2) 量測時熱量擴散示意圖[61]………………….....………...59
圖(4.4.1) 二行程無迴流實驗裝備簡圖……………………………...60
圖(4.4.2) 管末端出口迴流實驗裝備簡圖…………………………...60
圖(4.4.3) 出口迴流至末端實驗裝備簡圖…………………………...61
圖(4.4.4) 末端迴流至入口實驗裝備簡圖…………………………...61
圖(4.4.5) 出口迴流至入口實驗裝備簡圖…………………………...61
圖(4.4.6) 平板式熱交換器模組分解圖……………………………...62
圖(4.4.7) 平板式熱交換器實驗裝備實際圖………………………...62
圖(5.1.1) 二行程無迴流模型,冪次指數0.4時,格拉茲數 與出口無因次溫度於壁溫度比例不同之關係............................................…73
圖(5.1.2) 二行程無迴流模型,冪次指數0.8時,格拉茲數 與出口無因次溫度於壁溫度比例不同之關係……………………........……74
圖(5.1.3) 二行程無迴流模型,冪次指數0.4及壁溫度比例3時,格拉茲數 與出口無因次溫度於中間隔板位置不同之關係..............75
圖(5.1.4) 二行程無迴流模型,冪次指數0.8及壁溫度比例3時,格拉茲數 與出口無因次溫度於中間隔板位置不同之關係..............76
圖(5.1.5) 二行程無迴流模型,冪次指數0.4及中間隔板位置0.5時,格拉茲數 與出口無因次溫度於壁溫度比例不同之關係..........77
圖(5.1.6) 二行程無迴流模型,冪次指數0.8及中間隔板位置0.5時,格拉茲數 與出口無因次溫度於壁溫度比例不同之關係……..78
圖(5.1.7) 二行程無迴流模型,冪次指數0.4時,格拉茲數 與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係 …….........….79
圖(5.1.8) 二行程無迴流模型,冪次指數0.8時,格拉茲數 與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係…….…….....80
圖(5.1.9) 二行程無迴流模型,冪次指數0.4時,格拉茲數 與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係…….......81
圖(5.1.10) 二行程無迴流模型,冪次指數0.8時,格拉茲數 與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係……..….82
圖(5.1.11) 二行程無迴流模型,冪次指數0.4時,格拉茲數 與 於壁溫度比例不同及中間隔板位置不同之關係……..............….83
圖(5.1.12) 二行程無迴流模型,冪次指數0.8時,格拉茲數 與 於壁溫度比例不同及中間隔板位置不同之關係………..….……84
圖(5.2.1) 管末端出口迴流模型,冪次指數0.4時,格拉茲數 與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係….......…88
圖(5.2.2) 管末端出口迴流模型,冪次指數0.8時,格拉茲數 與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係 ….......…89
圖(5.2.3) 管末端出口迴流模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係...90
圖(5.2.4) 管末端出口迴流模型,冪次指數0.8時,格拉茲數 與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係...…91
圖(5.2.5) 管末端出口迴流模型,冪次指數0.4及壁溫度比例3且中間隔板位置0.5時,格拉茲數 與出口無因次溫度於不同迴流比之關係.......................................................................................................92
圖(5.2.6) 管末端出口迴流模型,冪次指數0.8及壁溫度比例3且中間隔板位置0.5時,格拉茲數 與出口無因次溫度於不同迴流比之關係……………………………………..................……………….…93
圖(5.2.7) 管末端出口迴流模型,冪次指數0.4且迴流比R=1時,格拉茲數 與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係………………………………………………………….....…..…94
圖(5.2.8) 管末端出口迴流模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係……………......……………………………………………….…95
圖(5.2.9) 管末端出口迴流模型,冪次指數0.4且迴流比R=1時,格拉茲數 與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係…………………………………………………..............….…96
圖(5.2.10) 管末端出口迴流模型,冪次指數0.8且迴流比R=1時,格拉茲數 與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係………………………………..............…………………….…97
圖(5.2.11) 管末端出口迴流模型,冪次指數0.4且迴流比R=1時,格拉茲數 與 於壁溫度比例不同及中間隔板位置不同之關係………………………………………………………………...…98
圖(5.2.12) 管末端出口迴流模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係………………………………….………………………….….…99
圖(5.3.1) 出口迴流至管末端模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係……………………………………………………….………....102
圖(5.3.2) 出口迴流至管末端模型,冪次指數0.8時,格拉茲數Gz與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係.....103
圖(5.3.3) 出口迴流至管末端模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係…………………….………………………………………….....104
圖(5.3.4) 出口迴流至管末端模型,冪次指數0.8時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係………………………………………………….………….…..105
圖(5.3.5) 出口迴流至管末端模型,冪次指數0.4及壁溫度比例3且中間隔板位置0.5時,格拉茲數Gz與出口無因次溫度於不同迴流比之關係………………………….........……………………….…..106
圖(5.3.6) 出口迴流至管末端模型,冪次指數0.8及壁溫度比例3且中間隔板位置0.5時,格拉茲數Gz與出口無因次溫度於不同迴流比之關係……………………………….........………………….…..107
圖(5.3.7) 出口迴流至管末端模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係……………………………………….………………….…..108
圖(5.3.8) 出口迴流至管末端模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係…………………………………………………….…….…..109
圖(5.3.9) 出口迴流至管末端模型,冪次指數0.4且固定中間隔板位置0.5時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及迴流比不同之關係………………………….............…………………….…..110
圖(5.3.10) 出口迴流至管末端模型,冪次指數0.8且固定中間隔板位置0.5時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及迴流比不同之關係………………………………………….............….……..111
圖(5.3.11) 出口迴流至管末端模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係…………………………………………………..........…..112
圖(5.3.12) 出口迴流至管末端模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係………………………….........……………………….…..113
圖(5.3.13) 出口迴流至管末端模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係………………………………………………….…….………..114
圖(5.3.14) 出口迴流至管末端模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係………………………………………………………….….…..115
圖(5.4.1) 管末端迴流至入口模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係....................................................................................................118
圖(5.4.2) 管末端迴流至入口模型,冪次指數0.8時,格拉茲數Gz與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係………………………………………………….………….…..119
圖(5.4.3) 管末端迴流至入口模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係...................................................................................................120
圖(5.4.4) 管末端迴流至入口模型,冪次指數0.8時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係...................................................................................................121
圖(5.4.5) 管末端迴流至入口模型,冪次指數0.4及壁溫度比例3且中間隔板位置0.5時,格拉茲數Gz與出口無因次溫度於不同迴流比之關係...........................................................................................122
圖(5.4.6) 管末端迴流至入口模型,冪次指數0.8及壁溫度比例3且中間隔板位置0.5時,格拉茲數Gz與出口無因次溫度於不同迴流比之關係...........................................................................................123
圖(5.4.7) 管末端迴流至入口模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係...............................................................................................124
圖(5.4.8) 管末端迴流至入口模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係...............................................................................................125
圖(5.4.9) 管末端迴流至入口模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係..........................................................................................126
圖(5.4.10) 管末端迴流至入口模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係..........................................................................................127
圖(5.4.11) 管末端迴流至入口模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係..................................................................................................128
圖(5.4.12) 管末端迴流至入口模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係..................................................................................................129
圖(5.5.1) 出口迴流至入口模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係......132
圖(5.5.2) 出口迴流至入口模型,冪次指數0.8時,格拉茲數Gz與出口無因次溫度於壁溫度比例不同於與迴流比不同之關係......133
圖(5.5.3) 出口迴流至入口模型,冪次指數0.4時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係..................................................................................................134
圖(5.5.4) 出口迴流至入口模型,冪次指數0.8時,格拉茲數Gz與出口無因次溫度於中間隔板位置不同與壁溫度比例不同之關係...................................................................................................135
圖(5.5.5) 出口迴流至入口模型,冪次指數0.4及壁溫度比例3且中間隔板位置0.5時,格拉茲數Gz與出口無因次溫度於不同迴流比之關係...............................................................................................136
圖(5.5.6) 出口迴流至入口模型,冪次指數0.8及壁溫度比例3且中間隔板位置0.5時,格拉茲數Gz與出口無因次溫度於不同迴流比之關係...............................................................................................137
圖(5.5.7) 出口迴流至入口模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係...................................................................................................138
圖(5.5.8) 出口迴流至入口模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與納賽數Nu於壁溫度比例不同及中間隔板位置不同之關係...................................................................................................139
圖(5.5.9) 出口迴流至入口模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係..............................................................................................140
圖(5.5.10) 出口迴流至入口模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與熱量傳送效率於壁溫度比例不同及中間隔板位置不同之關係.............................................................................................141
圖(5.5.11) 出口迴流至入口模型,冪次指數0.4且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係.................................................................................................142
圖(5.5.12) 出口迴流至入口模型,冪次指數0.8且迴流比R=1時,格拉茲數Gz與Ih/Ip於壁溫度比例不同及中間隔板位置不同之關係..................................................................................................143 


表目錄
表(3.7.1) 二行程無迴流模型以中間隔板為參數能源消耗增加率...53
表(3.7.2) 管末端出口迴流模型以中間隔板為參數能源消耗增加率........................................................................................................53
表(3.7.3) 出口迴流至管末端模型以中間隔板為參數能源消耗增加率........................................................................................................54
表(3.7.4) 管末端迴流至入口模型以中間隔板為參數能源消耗增加率........................................................................................................54
表(3.7.5) 出口迴流至入口模型以中間隔板為參數能源消耗增加率........................................................................................................54
表(4.3.1) 熱傳導係數與比熱量測結果[61]...........................................58
表(4.3.2) 物質標準狀況下比熱對照表[61]...........................................59
表(5.0.1) 二行程無迴流模型,級數解收斂情形,於隔板位置0.5、壁溫度比例3.........................................................................................66
表(5.0.2) 管末端出口迴流模型,級數解收斂情形,於隔板位置0.5、 及壁溫度比例3.........................................................................66
表(5.0.3) 出口迴流至管末端模型,級數解收斂情形,於隔板位置0.5、 及壁溫度比例3.........................................................................66
表(5.0.4) 管末端迴流至入口模型,級數解收斂情形,於隔板位置0.5、 及壁溫度比例3.........................................................................67
表(5.0.5) 出口迴流至入口模型,級數解收斂情形,於隔板位置0.5、 及壁溫度比例3.........................................................................67
表(5.0.6) 二行程無迴流模型,特徵值收斂情形,於隔板位置0.5、壁溫度比例3.........................................................................................67
表(5.0.7) 管末端出口迴流模型,特徵值收斂情形,於隔板位置0.5、 及壁溫度比例3.........................................................................68
表(5.0.8) 出口迴流至管末端模型,特徵值收斂情形,於 、 及壁溫度比例3................................................................................68
表(5.0.9) 管末端迴流至入口模型,特徵值收斂情形,於 、 及壁溫度比例3................................................................................68
表(5.0.10) 出口迴流至入口模型,特徵值收斂情形,於 、 及壁溫度比例3....................................................................................69
表(5.6.1) 二行程無迴流模型實驗值與理論值之平均誤差.............145
表(5.6.2) 管末端出口模型實驗值與理論值之平均誤差.................145
表(5.6.3) 出口回流至管末端模型實驗值與理論值之平均誤差.....146
表(5.6.4) 管末端迴流至入口模型實驗值與理論值之平均誤差.....146
表(5.6.5) 出口回流至入口模型實驗值與理論值之平均誤差.........147
參考文獻 1. P. Y. Chang, F. C. Chou and C.W. Tung, Heat transfer mechanism for newtonian and non-newtonian fluids in 2:1 rectangular ducts, Int. J. Heat Mass Transfer, 1998, 41, 3841.
2. B. Li, L. Zheng and X. Zhang, Heat transfer in pseudo-plastic non-newtonian fluids with variable thermal conductivity, Energy Conversion and Management, 2011, 52, 355.
3. H. M. Yeh, C. L. Chen, Y. Y. Peng and C. H. Chen, Effect of recycle type on solvent extraction through a parallel-plate membrane module, J. Membr. Sci., 2001, 183, 109 .
4. C. D. Ho, H. M. Yeh and J. J. Guo, An analytical study on the enrichment of heavy water in the continuous thermal diffusion column with external refluxes, Separ. Sci. Technol., 2002, 37, 3129.
5. C. D. Ho, H. M. Yeh and W. S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer, 1998, 41, 2589.
6. C. D. Ho and C. L. Ho, Improvement in performance of double-pass concentric circular mass exchangers, J. Chem. Eng. Jpn., 2003, 36, 81.
7. M. Sato and M. Goto, Gas absorption in water with microchannel devices, Separ. Sci. Technol., 2004, 39, 3163.
8. X. F. Peng and G. P. Peterson, Forced convection heat transfer of single-phase binary mixtures through microchannels, Exp. Therm. Fluid Sci., 1996, 12, 98.
9. R. K., and A. L. London, Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978, 196.
10. V-D. Dang., and M. Steinberg, Convective diffusion with homogeneous and heterogeneous reaction in a tube, J. Phys. Chem., 1980, 84, 214.

11. A.K. Cousins, Bounds on heat Transfer in a periodic Graetz problem, Journal of Heat Transfer, 1911, 113, 43.
12. B. Sefik, Numerical solution of Graetz problem with axial conduction, Numerical Heat Transfer. Part A, Applicationsm 1992, 21, 493.
13. O. Aydin, Effects of viscous dissipation on the heat transfer in a forced pipe flow. Part 2: Thermally developing flow, Energy Conversion and Management, 2005, 46, 3091.
14. M. Unsal, A solution for the complex eigenvalues and eigenfunction of the periodic Graetz problem, Int. Comm. Heat Mass Transfer, 1998, 25, 585.
15. C.D. Ho, An analytical study of laminar counterflow double-pass heat exchangers with external refluxes, Int. J. Heat Mass Transfer, 2000, 43, 3263.
16. B. Fourcher, K. Mansouri, An approximate analytical solution to the Graetz problem with periodic inlet temperature, The International Journal of Heat and Fluid Flow, 1997, 18, 229.
17. C.D. Ho, Double-pass heat transfer in a parallel-plate channel for improved device performance under uniform heat fluxes, Int. J. Heat Mass Transfer, 2007, 50, 2208.
18. C.D. Ho, W.Y. Yang, Heat transfer of conjugated Graetz problems with laminar counterflow in double-pass concentric circular heat exchangers, Int. J. Heat Mass Transfer, 2005, 48, 4474.
19. B. Weigand, An extract analytical solution for the extended turbulent Graetz problem with Dirichlet wall boundary conditions for pipe and channel flows, Int. J. Heat Mass Transfer, 1996, 39, 1625.
20. B. Weigand, M. Kanzamar, H. Beer, The extended Graetz problem with piecewise constant wall heat flux for pipe and channel flow, Int. J. Heat Mass Transfer, 2001, 44, 3941.
21. P. Valko′, Solution of the Graetz–Brinkman problem with the Laplace transform Galerkin method, Int. J. Heat Mass Transfer, 2005, 48, 1874.
22. R.S. Myong, D.A. Lockerby, J.M. Reese, The effect of gaseous slip on microscale heat transfer: An extended Graetz problem, Int. J. Heat Mass Transfer, 2006, 49, 2502.
23. H.E. Jeong, J.T. Jeong, Extended Graetz problem including streamwise conduction and viscous dissipation in microchannel, Int. J. Heat Mass Transfer, 2006, 49, 2151.
24. S.W. Tasi, H.M. Yeh, A study of the separation efficiency in horizontal thermal diffusion columns with external refluxes, The Canadian Journal of Chemical Engineering, 1985, 63, 406.
25. H.M Yeh, S.W. Tsai, C.L. Chiang, Effects of recycle on heat and mass transfer between parallel-plate wall with equal fluxes, Int. J. Heat Mass Transfer, 1988, 31, 1853.
26. C. D. Ho and W. S. Sheu., The influence of recycle on double-pass heat and mass transfer through a parallel-plate device, Int. J. Heat Mass Transfer, 1985, 63, 406.
27. C. D. Ho and S.U. Chiang, A study of mass transfer efficiency in parallel-plate channel with external refluxes, Chem. Eng. J., 2002, 85, 207.
28. C. Xie and J. P. Hartnett, Influence of variable viscosity of mineral oil on laminar Heat Transfer in a 2:1 Rectangular Channel, Ind. Eng. Chem. Res., 1992, 35, 641.
29. C. Xie and J. P. Hartnett, Influence of rheology on laminar heat transfer to viscoelastic fluid in a rectangular channel, Ind. Eng. Chem. Res., 1992, 31, 727.
30. F. C. Chou and C.W. Tung, The mechanism of heat transfer enhancement for mineral oil in 2:1 rectangular ducts, Int. J. Heat Mass Transfer, 1995, 38, 2863.
31. C. P. Tso, J. Sheela Francisca and Y. M. Hung, Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes, J. Non-Newtonian Fluid Mech., 2010, 165, 625.
32. C. Y. Zhao and T. J. Lu, Analysis of microchannel heat skins for electronics cooling, Int. J. Heat Mass Transfer, 2002, 45, 4857.
33. E. Papoutsakis, D. Rarmkrishna and H. C. Lim, The extended greatz problem with dirichlet wall boundary conditions, Applied Scientific Research, 1980, 36, 13.
34. R. F. Barron, X. Wang, R. O. Warrington and T. Ameel, Evaluation of eigenvalues for the graetz problem in slip-flow, Int. Comm. Heat Mass Transfer, 1996, 4, 563.
35. J. R. Sellars, M. Tribus and J. S. Klein, Heat transfer to laminar flow in a round tube or flat conduit-the graetz problem extended, Trans. Am. Mech. Engrs., 1956, 78, 441.
36. T. L. Perelman, On conjugated problems of heat transfer, Int. J. Heat Mass Transfer, 1961, 3, 293.
37. R. J. Nunge and W. N. Gill, Analysis of heat or mass transfer in some countercurrent flows, Int. J. Heat Mass Transfer, 1965, 8, 873.
38. R. J. Nunge and W. N. Gill, An analytical study of laminar counterflow double-pipe heat exchangers, AIChE J., 1966, 12, 279.
39. E. J. Davis, Exact solution for a class of heat and mass transfer problem, Can. J. Chem. Eng., 1973, 51, 562.
40. E. Papoutsakis and D. Ramkrishna, Conjugated graetz problems. I: general formalism and a class of solid-fluid problems, Chem. Eng. Sci., 1981, 36, 1381.
41. H.M. Yeh, S.W. Tsai, C.L. Chiang, Recycle effects on heat and mass transfer through a parallel-plate channel, AIChE J., 1987, 33, 1743.
42. C.D. Ho., W.S. Sheu., The influence of recycle on double-pass heat and mass transfer through a parallel-plate device, Int. J. Heat Mass Transfer, 1999, 42, 1707.
43. C.D. Ho, H.M. Yeh, W.S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer, 1998, 41, 2589.
44. C.D. Ho, W.S. Sheu, Double-pass heat or mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer, 2000, 43, 487.
45. C.D. Ho, C.L. Ho, Improvement in performance of double-pass concentric circular mass exchangers, Journal of Chemical Engineering of Japan, 2003, 36, 81.
46. Chii-Dong Ho, Wen-Yi Yang, The influences of recycle on a double-pass laminar counterflow concentric circular heat exchangers, Int. J. Heat Mass Transfer, 2003, 46, 2103.
47. C.D. Ho, W.Y. Yang, An analytical study of heat-transfer efficiency in laminar counterflow concentric circular tubes with external refluxes, Chemical Engineering Science, 2003, 58, 1235.
48. C.D. Ho, S.C. Yeh, Improvement in device performance on laminar counterflow concentric circular heat exchangers with uniform wall fluxes, Int. J. Heat Mass Transfer, 2006, 49, 2020.
49. C.D. Ho, Y. J. Chuang, J.W. Tu, Double-pass flow heat transfer in a parallel-plate channel for improved device performance under uniform heat fluxes, Int. J. Heat Mass Transfer, 2007, 50, 2208.
50. C.D. Ho, Y.C. Tsai, J.W. Tu, Improvement on device performance in multi-pass heat transfer through a parallel-plate channel with external recycle, Int. J. Heat Mass Transfer, 2007, 50, 4805.
51. C.D. Ho, J.W. Tu, S.C. Yeh, J.J. Guo, Heat-transfer efficiency improvement of double-pass concentric circular heat exchangers under uniform wall fluxes, Int. Comm. Heat Mass Transfer, 2008, 35, 828.
52. C.D. Ho, J.W. Tu, Y.J. Chuang, C.J Chuang, Recycle effect on heat-transfer efficiency improvement in a double-pass parallel-plate heat exchanger under uniform wall fluxes, Int. Comm. Heat Mass Transfer, 2008, 35, 1344.
53. C.D. Ho, J.W. Tu, G.B. Wang, W.C2 Lai, W.Z. Chen, Recycle effect on heat transfer enhancement in double-pass parallel-plate heat exchangers under asymmetric wall fluxes, Int. Comm. Heat Mass Transfer, 2010, 37, 274.
54. S. X. Gao and J. P. Hartnett, Heat transfer behavior of reiner-rivlin fluids in rectangular ducts, lnt. J. Heat Mass Transfer, 1996, 39, 1317.
55. D. L. Lee , F. Thomas and Jr. Irvine, Shear rate dependent thermal conductivity measurements of non-newtonian fluids, Experimental Thermal and Fluid Science, 1997, 15, 16.
56. Y. H. Koh, N. S. Ong, X. Y. Chen, Y. C. Lam and J. C. Chai, Effect of temperature and inlet velocity on the flow of a nonnewtonian fluid, Int. Comm. Heat Mass Transfer, 2004, 31, 1005.
57. R. Nebbali and K. Bouhadef, Non-newtonian fluid flow in plane channels: heat transfer enhancement using porous blocks, International Journal of Thermal Sciences, 2011, 50, 1984.
58. G. G. Lin, C. D. Ho, J. J. Huang and Y. C. Chen, An analytical study of power-law fluids in double-pass heat exchangers with external recycle, Int. J. Heat Mass Transfer, 2012, 55, 2261.
59. J. Mitrovic, B. Maletic, and B.S. Baclic, Some peculiarities of the asymmetric Graetz problem, International Journal of Engineering Science, 2006, 44, 436.
60. R. P. Chhabra and J. F. Richardson, Non-newtonian flow and applied rheology: engineering applications, 2nd ed., Butterworth-Heinemann, 2008, 126.
61. 國立台北科技大學奈米光電磁材料技術研發中心。
62. R. J. Moffat, Describing the uncertainties in experimental results, Exp. Thermal Fluid Sci., 1988, 1, 3.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信