淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1808201410251700
中文論文名稱 基於階梯式頻道模型之多頻道無線存取協定
英文論文名稱 Multi-channel MAC Protocols by Applying Staggered Channel Model for Wireless Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系博士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 王姿琳
研究生英文姓名 Tzu-Lin Wang
學號 899410079
學位類別 博士
語文別 英文
口試日期 2014-06-13
論文頁數 115頁
口試委員 指導教授-張志勇
委員-陳宗禧
委員-陳裕賢
委員-石貴平
委員-趙志名
委員-張志勇
中文關鍵字 多頻道  媒體存取協定  會面問題  頻道模型  偕同網路  無線感知網路 
英文關鍵字 Multichannel  MAC protocol  Rendezvous problem  Channel model  Cooperative networks  Cognitive radio networks 
學科別分類 學科別應用科學資訊工程
中文摘要 為了有效提升無線網路頻譜使用率,研發多頻道無線存取協定已成為無線網路眾多議題中的熱門選項之一。在多頻道環境中,送者如何得知收者所處頻道並切換至該頻道並與收者會面,進而交換控制封包,將是研發多頻道無線存取協定必定遭遇的挑戰之一,稱為”會面問題”。為了解決會面問題,目前多頻道模型可分為三種,分別為Control-Control Based(CCB)、Hopping Based(HB)以及Control-Period Based(CPB)。雖然上述三種頻道模型能解決會面問題,但仍各自存在一些缺點。在CCB頻道模型中,由於節點僅配置一根半雙工天線,因此當傳輸對傳輸資料時,便無法維護完整的頻道使用狀態,當傳輸對完成資料交換後,欲進行下一次資料傳輸時,可能因為離開控制頻道而導致擁有的頻道使用狀態資訊不足,而重覆預約正被其他傳輸對使用的頻道,造成”多頻道隱藏節點問題”。另一方面,在HB頻道模型中,每個節點依照特定跳頻順序進行跳頻,可解決會面問題。但當所有節點一同跳頻至某一頻道並交換控制封包時,將導致網路壅塞及封包碰撞問題。最後,在CPB頻道模型中,所有節點在每一段信標間隔(Beacon Interval)將切換至一預設頻道的控制視窗,以進行節點之間的會面與控制封包交換。但因為每一段信標間隔僅有一個控制視窗被節點使用,導致其他頻道的相同時段並無任何封包傳輸,進而造成網路效能低落。
有鑑於此,本論文提出一新穎的多頻道模型,稱為階梯式頻道模型 (Staggered Channel Model)。此階梯式頻道模型錯開每個頻道上的控制視窗,使其成為階梯形狀。藉由此頻道模型並使用本論文研發之基本傳輸規則,可有效解決會面問題、多頻道隱藏節點問題及低頻寬使用率等問題,進而提升頻道使用率及網路效能。此外,基於此階梯式頻道模型,本論文亦針對偕同網路 (Cooperative Networks)及無線感知網路 (Cognitive Radio Networks)提出相對應的多頻道無線存取協定。首先,無線網路環境由於訊號衰減及干擾等問題,造成資料傳輸成功率大幅下降。為了提升通訊可靠度,本論文採用偕同網路概念,進一步研發CM-MAC協定。在資料傳輸失敗時,CM-MAC利用階梯式多頻道模型的特性,使送者快速地找尋適當數量的合作節點,並與合作節點同時地將資料傳送至收者,以增加傳輸可靠度與網路效能。實驗結果顯示,相較於以往多頻道合作傳輸協定,本論文提出的CM-MAC協定除了大幅提升資料傳輸可靠度外,亦增加網路吞吐量及降低控制成本。而針對無線感知網路方面,本論文提出一SMC-CR-MAC協定,使次級使用者 (Secondary Users) 在不干擾付費使用者 (Primary Users)傳輸的前提下,依舊能有效利用未被付費使用者佔用的付費頻道進行資料輸。而因為付費頻道可能在任意時間與地點被付費使用者佔用,本論文提出之SMC-CR-MAC協定亦針對不同時間與地點出現付費使用者的情況,提出相對應的解決辦法,讓次級使用者在其他可使用的付費頻道繼續未完成的資料傳輸。實驗結果顯示SMC-CR-MAC協定可大幅提升次級使用者的會面成功機率、提升網路吞吐量以及有效降低次級使用者之封包傳輸延遲時間。
英文摘要 Developing the multichannel Media Access Control (MAC) protocol is the key technique for improving the utilization of wireless spectrum. One of the major challenges to develop the multichannel MAC protocol is the well-known “Rendezvous Problem”. The rendezvous problem occurs since the sender cannot be aware of the channel where the receiver stayed. Therefore, the sender is unable to exchange control packets with its receiver. To overcome rendezvous problem, existing multichannel MAC protocols can be classified into three types, including Control-Control Based (CCB), Hopping Based (HB), and Control-Period Based (CPB) channel models. Although above-mentioned three channel models can resolve rendezvous problem, they still have some disadvantages. In CCB channel model, each node cannot maintain the complete channel usage information since it did not stay at the control channel. That is, when a pair of sender and receiver exchanges data on a data channel, they cannot overhear the control packets exchanged on the common control channel. The pair of sender and receiver may attempt to reserve a data channel where other pair occupied, and hence the Multichannel Hidden Terminal Problem (MHT-Problem) occurs. On the other hand, in HB channel model, each node follows a predefined hopping sequence, hoping to different channels at each time slot. Nevertheless, all nodes switching to a channel at the same time slot lead to the contention and collision phenomena. In CPB channel model, each node should switch to the negotiation window of a predefined channel in every beacon interval, aiming to rendezvous with its receiver and then exchange control packets. However, the low channel utilization problem will be arisen. This occurs because the negotiation windows of all channels other than the default channel will not be used.
This thesis firstly proposes a novel multichannel model, called Staggered Channel Model. In the proposed staggered channel model, the negotiation windows of all channels are arranged to be staggered. Moreover, by applying the proposed staggered channel model and basic transmission rules, each node overcomes rendezvous, MHT, and low channel utilization problems, improving the network capacity. In addition, this thesis proposes two multichannel MAC protocols based on the staggered channel model for cooperative networks and cognitive radio networks. In the signal-fading and interference-rich network environment, high probability of failure transmission results in low network performance. To improve communication reliability, the proposed CM-MAC protocol allows that each sender selects enough number of cooperative nodes as soon as possible when transmission fails. Then, the sender simultaneously transmit data with the selected cooperative node to the receiver. Simulation results show that the proposed CM-MAC protocol not only scientifically improves the packet delivery ratio and network throughput but also decreases the control overhead.
For cognitive radio networks, this thesis proposes the SMC-CR-MAC protocol to continue the transmission of secondary users (SUs) without interfering with the data exchange of primary users (PUs). Since the PU may appear at any time and location, the proposed SMC-CR-MAC protocol takes the timing and location of PU appearance into account and develops different policies to continue the unfinished data exchange of SU pairs. Performance evaluation shows that the proposed SMC-CR-MAC protocol can improve the successful rendezvous probability between SU sender and receiver, enhance network throughput, and reduce the transmission delay of SU pair when PU is detected.
論文目次 Contents
Contents V
List of Figures. VII
List of Tables IX
Chapter 1. Introduction 1
Chapter 2. Related Work 6
2.1 Existing Multichannel Models 6
2.2 The MAC Protocols for Cooperative Networks 8
2.3 Multichannel MAC Protocols for Cognitive Radio Networks 12
Chapter 3. The Proposed Staggered Channel Model 16
3.1 Network Environment 16
3.2 Channel Model and Frame Structure 17
3.3 The Missing-Home Problem and Its Solutions 20
3.4 The Subscribing-Collision Problem and Its Solutions 22
3.5 Basic Transmission by Applying Staggered Channel Model 26
Chapter 4. The Proposed Cooperative MAC (CM-MAC) Protocol 29
4.1 The Cooperative Networks 29
4.2 Network Environment and Problem Formulation 32
4.2.1 Network Environment 32
4.2.2 Problem Formulation 32
4.3 The CM-MAC protocol 36
4.3.1 Normal Transmission State 36
4.3.2 Cooperative Transmission State 37
4.4 The Pseudocode of CM-MAC Protocol 48
4.5 Performance Evaluation 52
4.6 Summary 62
Chapter 5. The Proposed Cognitive Radio MAC (SMC-CR-MAC) Protocol 64
5.1 The Cognitive Radio Networks 64
5.2 Network Environment and Problem Formulation 68
5.2.1 Network Environment 68
5.2.2 Problem Formulation 69
5.3 The SMC-CR-MAC Protocol 73
5.3.1 Homogeneous Sensing Situation (HOSS) 74
5.3.2 Heterogeneous Sensing Situation (HESS) 79
5.4 The Pseudocode of SMC-CR-MAC Protocol 86
5.5 Performance Evaluation 91
5.6 Summary 104
Chapter 6. Conclusions 105
References 111

List of Figures
3.1 The proposed staggered multichannel model. 17
3.2 The frame structure of the proposed staggered channel model. 18
3.3 The MH-Problem. 21
3.4 The SC-Problem. 24
3.5 The basic transmission based on the proposed staggered channel model. 27
4.1 The basic concept of the proposed CM-MAC protocol. 39
4.2 Channel switching phase. 40
4.3 Two matrices of M_Bitmap and M_Bitmap^'. 43
4.4 The TS-constraint. 44
4.5 The procedure of CM-MAC protocol. 49
4.6 The procedure of channel switching phase. 49
4.7 The procedure of cooperative node identification phase. 51
4.8 The procedure of cooperative data retransmission phase. 52
4.9 The comparison of four MAC protocols in terms of the average packet delay by varying the number of communication pairs. 54
4.10 The comparison of four MAC protocols in terms of the aggregated network throughput by varying the value of SNR. 55
4.11 The impact of the value of SNR on the packet delivery ratio. 56
4.12 The comparison of four mechanisms in terms of the average packet delay by varying the value of SNR. 57
4.13 The impact of the value of SNR on the control packet ratio by applying four MAC protocols. 58
4.14 The impact of the size of negotiation window and the number of communication pairs on the aggregated network throughput. 59
4.15 The comparison of two mechanisms in terms of collision probability by varying the number of communication pairs and the size of negotiation window. 60
4.16 The comparison of the average packet delay by varying the packet arrival rate. 62
5.1 The solution to the NB-Problem. 77
5.2 The solution to the DB-Problem. 79
5.3 The solution to the SA-Problem. 86
5.4 The procedure of HOSS. 87
5.5 The procedure of HESS. 88
5.6 The state diagram of the proposed SMC-CR-MAC protocol. 90
5.7 The probability of the successful rendezvous versus the probability of PU appearance in the NW. 92
5.8 The average network throughput by varying probability of PU appearance in the NW. 93
5.9 The average network throughput by varying the probability of PU appearance on the data channel/DW. 95
5.10 The impact of probability of PU appearance on spectrum hole utilization. 97
5.11 Network throughput comparison of three MAC protocols by varying the probability of PUs appearance. 98
5.12 The relation between number of SU communication pairs and average network throughput in the network throughput. 99
5.13 The standard deviation of the traffic load associated with the number of SU communication pairs. 101
5.14 The aggregated network throughput by varying transmission duration of PU and probability of PU appearance. 102
5.15 The comparison of three mechanisms in terms of average packer delay by varying the probability of PU appearance. 103

List of Tables
2.1 Comparison of cooperative MAC protocols. 12
2.2 Comparison of CR MAC protocols. 14
4.1 The abbreviations of compared mechanism. 52
4.2 Simulation Parameters of CM-MAC. 52
5.1 Simulation Parameters of SMC-CR-MAC. 91
參考文獻 [1]IEEE Std 802.11b-1999, Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer Extension in the 2.4 GHz Band, 1999.
[2]J. Mo, H. S. W. So, and J. Walrand, “Comparison of Multichannel MAC Protocols,” IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp. 50-65, Jan. 2008.
[3]M. Natkaniec, K. Kosek-Szott, S. Szott, and G. Bianchi, “A Survey of Medium Access Mechanisms for Providing QoS in Ad-Hoc Networks,” IEEE Communication Survey & Tutorials, vol. 15, no. 2, pp. 592-620, second quarter 2013.
[4]H. J. Lei, C. Gao, Y. C. Guo, Z. Z. Zhang, “Survey of Multi-Channel MAC Protocols for IEEE 802.11-Based Wireless Mesh Networks,” The Journal of China Universities of Posts and Telecommunications, vol. 18, no. 2, pp. 33-34, Apr. 2011.
[5]J. Lee, J. Mo, T. M. Trung, J. Walrand, and H. S.W. So, “Design and Analysis of a Cooperative Multichannel MAC Protocol for Heterogeneous Networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 7, pp. 3536-3548, Sep. 2010.
[6]Y. Zhang and L. Lazos, “Countering Selfish Misbehavior in Multi-channel MAC Protocols,” IEEE Infocom, Apr. 2013.
[7]W. T. Chen, J. C. Liu, T. K. Huang, and Y. C. Chang, “TAMMAC: An Adaptive Multi-Channel MAC Protocol for MANETs,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 4541-4545, Nov. 2008.
[8]T. Luo, M. Motani, and V. Srinivasan, “Cooperative Asynchronous Multichannel MAC: Design, Analysis, and Implementation,” IEEE Transactions on Mobile Computing, vol. 8, no. 3, pp. 338-352, Mar. 2009.
[9]S. L. Wu, C. Y. Lin, Y. C. Tseng, and J. P. Sheu, “A Novel MAC Protocol with On-Demand Channel Assignment for Multi-hop Mobile Ad Hoc Networks", Journal of Electrical Engineering, vol. 11, no. 4, pp. 361-373, Dec. 2004.
[10]M. Seo, Y. Kim, and J. Ma, “Multi-Channel MAC Protocol for Multi-Hop Wireless Networks: Handling Multi-Channel Hidden Node Problem Using Snooping,” IEEE Milcom, Nov. 2008.
[11]A. Jeng, R. Jan, C. Li, and C. Chen, “Release-Time-Based Multichannel MAC Protocol for Wireless Mesh Networks,” Computer Networks, vol. 55, no. 23, pp. 2176–2195, Jun. 2011.
[12]S. L. Wu, Y. C. Tseng, C. Y. Lin, and J. P. Sheu, “A Multi-Channel MAC Protocol with Power Control for Multi-Hop Mobile Ad-Hoc Networks,” The Computer Journal, vol. 45, no. 1, pp. 101-110, 2002.
[13]W. C. Hung, K. L. E. Law, and A. Leon-Garcia, ”A Dynamic Multichannel MAC for Ad-Hoc LAN,” IEEE QBSC, Jun. 2002.
[14]P. J. Wu and C. N. Lee, “Connection-Oriented Multi-Channel MAC Protocol for Ad-Hoc Networks,” Computer Communications, vol. 32, no. 1, pp. 169-178, Jan. 2009.
[15]F. Hou, L. X. Cai, X. (Sherman) Shen, and J. Huang, “Asynchronous Multichannel MAC Design With Difference-Set-Based Hopping Sequences,” Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1728-1739, May 2011.
[16]Y. Zhang, Q. Li, G. Yu, and B. Wang, “ETCH: Efficient Channel Hopping for Communication Rendezvous in Dynamic Spectrum Access Networks,” IEEE INFOCOM, Apr. 2011.
[17]P. Bahl, R. Chandra, and J. Dunagan, “Channel Hopping Multiple Access,” IEEE ICC, Jun 2000.
[18]P. Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless Networks,” ACM MobiHoc, May 2004.
[19]H. S. So and J. Walrand, “McMAC: A Multi-Channel MAC Proposal for Ad-Hoc Wireless Networks,” IEEE WCNC, Mar. 2007.
[20]J. So and N. Vaidya, “Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden TerminalsUsing A Single Transceiver,” ACM MobiHoc, May 2004.
[21]J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic, “TMMAC: An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks,” IEEE ICC, Jun. 2007.
[22]C. M. Chao, Y. Z. Wang, and M. W. Lu, “Multiple-Rendezvous Multichannel MAC Protocol Design for Underwater Sensor Networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 1, pp. 128-138, Jan. 2013.
[23]W. T. Chen, J. C. Liu, T. K. Huang, and Y. C. Chang, “TAMMAC: An Adaptive Multi-Channel MAC Protocol for MANETs,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 4541-4545. Nov. 2008.
[24]W. H. Liao, K. P. Shih, and W. C. Chung, “Multi-Channel Medium Access Control Protocol with Channel Distribution for Mobile Ad-Hoc Networks,” IET Communications, vol. 3, no. 12, pp. 1821-1831, Dec. 2009.
[25]J. H. Chen and S. T. Sheu, “Distributed Multichannel MAC Protocol for IEEE 802.11 Ad Hoc wireless LANs,” Computer Communications, vol. 28, no. 9, pp. 1000-1013, Jun. 2005.
[26]H. Zhu and G. Cao, ”rDCF: A Relay-Enabled Medium Access Control Protocol for Wireless Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 9, pp. 1201-1214, Sep. 2006.
[27]P. Liu, Z. Tao, and S. Panwar, “A Cooperative MAC Protocol for Wireless Local Area Networks,” IEEE ICC, May. 2005.
[28]S. Moh and C. Yu, “Cooperative Diversity-Based Robust MAC Protocol in Wireless Ad Hoc Networks,” IEEE Transactions on Parallel And Distributed Systems, vol. 22, no. 3, pp. 353-363, Mar. 2011.
[29]J. N. Laneman, D. Tse, and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and outage Behavior,” IEEE Transactions on Information Theory, vol. 50, pp. 3062-3080, Dec. 2004.
[30]M. G. Jibukumar, R. Datta, and P. K. Biswas, ”CoopMACA: a cooperative MAC protocol using packet aggregation,” ACM/Baltzer Journal Wireless Networks, vol. 16, no. 7, pp. 1865-1883, Oct. 2010.
[31]S. G. Sayed, Y. Yang, and J. Xu, “BTAC: A Busy Tone Based Cooperative MAC Protocol for Wireless Local Area Networks,” ACM/Baltzer Journal of Mobile Networks and Applications, vol. 16, no. 1, pp. 4-16, Feb. 2011.
[32]A. Sendonaris, E. Erkip, and B. Aazhang, ”User Cooperation Diversity-Part I: System Description,” IEEE Transactions on Communications, vol. 51, pp. 1927-1938, Nov. 2003.
[33]A. Sendonaris, E. Erkip, and B. Aazhang, “User Cooperation Diversity-Part II: Implementation Aspects and Performance Analysis,” IEEE Transactions on Communications, vol. 51, pp. 1939-1948, Nov. 2003.
[34]P. Liu, C. Nie, T. Korakis, E. Erkip, S. S. Panwar, F. Verde, and A. Scaglione, “STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, Apr. 2012.
[35]D. M. Shila, T. Anjali, and Y. Cheng, “A Cooperative Multi-Channel MAC Protocol for Wireless Networks,” IEEE Globecom, Dec. 2010.
[36]Y. Zhou, J. Liu, L. Zheng, C. Zhai, and H. Chen, “Link-Utility-Based Cooperative MAC Protocol for Wireless Multi-Hop Networks,” IEEE Transactions on Wireless Communications, vol. 10, no. 3, pp. 995-1005, Mar. 2011.
[37]M. Khalid, Y. Wang, I. Ra, and R. Sankar, “Two-Relay-Based Cooperative MAC Protocol for Wireless Ad hoc Networks,” IEEE Transaction on Vehicular Technology, vol. 60, no.7, pp. 3361-3373, Sep. 2011.
[38]T. Luo, M. Motani, and V. Srinivasan, “Energy-Efficient Strategies for Cooperative Multichannel MAC Protocols,” IEEE Transactions on Mobile Computing, vol. 11, no. 4, pp. 553–566, Apr. 2012.
[39]“Federal Communications Commission Spectrum Policy Task Force,” the Spectrum Efficiency Working Group, FCC, Nov. 2002.
[40]A. D. Domenico, E. C. Strinati, and M. D. Benedetto, “A Survey on MAC Strategies for Cognitive,” IEEE Communication survey & tutorials, vol. 14, no. 1, pp. 21-44, First Quarter, 2012.
[41]Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive Radio Networking and Communications: An Overview”, IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3386-3407, Sep. 2011.
[42]R. W. Thomas, D. H. Friend, L. A. Dasilva, and A. B. Mackenzie. “Cognitive Networks: Adaptation and Learning to Achieve End-to-End Performance Objectives,” IEEE Communications Magazine, vol. 44, no. 12, pp. 51-57, Dec. 2006.
[43]IEEE 802.22 Working Group in Wireless Regional Area Networks, http://www.ieee802.org/22/.
[44]Ian F. Akyildiz, Won-Yeol Lee, and Kaushik R. Chowdhury, “CRAHNs: Cognitive Radio Ad Hoc Networks,” ACM Journal of Ad Hoc Networks, vol. 7, no. 5, pp. 810-836, Jul. 2009.
[45]L. T. Tan and L. B. Le, “Distributed MAC Protocol for Cognitive Radio Networks: Design, Analysis, and Optimization,” IEEE Transactions on Vehicular Technology, vol. 60, no. 8, pp. 3990-4003, Oct. 2011.
[46]W. S. Jeon, J. A. Han, and D. G. Jeong, “A Novel MAC Scheme for Multichannel Cognitive Radio Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 11, no. 6, pp. 922-937, Jun. 2012.
[47]L. T. Tan and L. B. Le, “Channel Assignment with Access Contention Resolution for Cognitive Radio Networks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 6, pp. 2808-2823, Jul. 2012.
[48]J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A Hardware-Constrained Cognitive MAC for Efficient Spectrum Management,” IEEE Journal on Selected Areas in Communication, vol. 26, no. 1, pp. 106-117, Jan. 2008.
[49]H. Su and X. Zhang, “Opportunistic MAC Protocols for Cognitive Radio Based Wireless Networks,” IEEE CISS, Mar. 2007.
[50]W. S. Jeon, J. A. Han, and D. G. Jeong, “A Novel MAC Scheme for Multi-Channel Cognitive Radio Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 11, no. 6, pp. 922-934, Jun. 2012.
[51]L. C. Lau, C. C. Lin, and S. Y. Wang, “An IEEE 802.11 Cognitive Radio MAC Protocol with Dynamic Bandwidth Allocation Capabilities,” IEEE WCNC, Apr. 2012.
[52]L. Ma, X. Han, and C.-C. Shen, “Dynamic Open Spectrum Sharing MAC Protocol for Wireless Ad Hoc Networks,” IEEE DySPAN, Nov. 2005.
[53]S. M. Kamruzzaman, “CR-MAC: a Multichannel MAC Protocol for Cognitive Radio Ad Hoc Networks,” IEEE International Journal of Computer Networks and Communications, vol. 2, no. 5, Sep. 2010.
[54]S. M. Kamruzzaman, “An Energy Efficient Multichannel MAC Protocol for Cognitive Radio Ad Hoc Networks,” International Journal of Communication Networks and Information Security, vol. 2, no. 2, pp. 112-119, Aug. 2010.
[55]H. S. W. So, G. Nguyen, and J. Walrand, “Practical Synchronization Techniques for Multi-Channel MAC,” ACM MobiCom, Sep. 2006.
[56]Y. He, J. Sun, X. J. Ma, A. V. Vasilakos, R. X. Yuan, and W. B. Gong, “Semi-Random Backoff: Towards Resource Reservation for Channel Access in Wireless LANs,” IEEE/ACM Transactions on Networking, vol. 21, no. 1, pp. 204-217, Feb. 2013.
[57]VINT Group, “UCB/LBNL/VINT Network Simulator ns (version 2),” available: http://www.isi.edu/nsnam/ns
[58]MW-Node path for ns2 to support multiple interfaces & multiple channels, available: http://www.q2s.ntnu.no/~paquerea/ns.php
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-08-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信