§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1808201012381800
DOI 10.6846/TKU.2010.00490
論文名稱(中文) 太陽能選擇性吸收塗膜之製備與性質分析
論文名稱(英文) Preparation and characterization of solar spectrally selective absorber coatings
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 黃井勵
研究生(英文) Ching-Li Huang
學號 697400355
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-22
論文頁數 80頁
口試委員 指導教授 - 張朝欽
委員 - 陳慶鐘
委員 - 張正良
關鍵字(中) 奈米金
氧化還原反應
太陽能選擇性吸收膜
關鍵字(英) gold nanoparticles
oxidation-reduction reaction
solar spectrally selective absorber
第三語言關鍵字
學科別分類
中文摘要
本研究分為兩個部分,第一部分利用商用塗料以不同製程(刮刀塗佈法、浸塗法及噴塗法)製備太陽能吸收膜,太陽能選擇性吸收膜的吸收率可達0.92-0.94,經由太陽光模擬器照射後測量銅板熱平衡溫度差高達60-62 oC。利用浸塗法塗佈成膜需要調配商用塗料固成分50 wt%以上,此外,經噴塗法塗佈成膜,在DMF溶劑下,需噴塗34 g/m2以上;在丙酮溶劑下,需噴塗40 g/m2以上。除了以噴塗法在丙酮溶劑下塗佈的吸收膜,其餘的太陽能吸收膜對銅基材的附著程度均有好的表現。
    第二部分為含奈米金粒子PU選擇性吸收膜之製備與性質分析,具有硫醇官能基的聚胺基甲酸酯作為黏合劑及奈米金保護劑,金鹽會在銅板上還原後形成奈米金粒子及銅氧化物。當提高金鹽濃度,其吸收率及光熱轉換表現越好,然而,即使金鹽濃度降低至3.03 mM,PU固成分極低之下,太陽光模擬機照射後,銅基材的熱平衡溫度差提升至67 oC。
英文摘要
This study was divided into two parts. The first part was the solar absorber coatings prepared using a commercial paint via different coating processes (doctor blading, dip coating, and spray method). The absorbance of the solar spectrally selective absorber coatings can reach to 0.92~0.94, and the temperature increment of the copper substrates after exposing under a standard sunlight intensity can be up to 60~62 oC. It was found that, a high solid content (50 wt%) was required when the absorber coatings were made by using dip coating. Besides, weights of the coated absorber made by using spray method have to exceed 34 g/m2 and 40 g/m2 when DMF and acetone was the solvent, respectively. The adhesion of the absorber coating to the copper substrate was quite good except that of the absorber coating made by using spray method and acetone as the solvent.
The second part was the preparation and characterization of poly(urethane) based solar spectrally selective absorber coatings containing gold nanoparticles. Poly(urethane) containing thiol groups acted as the binder and the protecting agent of gold nanoparticles. Gold nanoparticles were formed by reducing HAuCl4 and copper oxides were formed by oxidizing the copper substrate. As the concentration of HAuCl4 increased, both absorbance and photo-thermal conversion performance increased. However, even though the concentration of HAuCl4 was quite low (3.03 mM), the temperature increment of the copper substrates after exposing under a standard sunlight intensity can be up to 67 oC when the solid content of poly(urethane) was quite low.
第三語言摘要
論文目次
總目錄
中文摘要	I
英文摘要	II
總目錄	IV
表目錄	VI
圖目錄	VII
第一章 序論	1
1-1選擇性吸收膜原理及種類	1
1-2選擇性吸收塗膜發展方向	4
1-3研究目的	5
第二章 文獻回顧	6
2-1選擇性吸收膜原理	6
2-2選擇性吸收塗膜	9
2-2-1銅錳鐵/鈷尖晶石	9
2-2-2 CuCr2O4黑色商用顏料	10
2-2-3碳-無機氧化物	14
2-2-4其他	17
2-2 奈米金的光熱性質表現	20
第三章 商用塗料製備太陽能吸收膜與塗膜性質分析	23
3-1實驗部分	23
3-1-1實驗藥品	23
3-1-2實驗步驟	23
3-1-3分析儀器	25
3-2不同製程方法研究與塗膜性質	27
3-2-1刮刀塗佈法	27
3-2-2浸泡塗佈法	32
3-2-3噴塗法	38
3-3	商用塗料製備太陽能吸收膜之結論	43
第四章 PU選擇性吸收塗膜製備與性質分析	44
4-1實驗部分	44
4-1-1實驗藥品	44
4-1-2實驗步驟	45
4-1-3分析儀器	49
4-2 PU選擇性吸收塗膜	50
4-3近紅外光吸收之探討	61
4-4 PU選擇性吸收塗膜之結論	68
參考文獻	69
附錄	73









表目錄
表1-1選擇性吸收膜製備方式的優缺點	2
表3-1刮刀塗佈法製備太陽能吸收膜之吸收率與光熱轉換表現	30
表3-2浸塗法製備太陽能吸收膜之吸收率與光熱轉換表現	38
表3-3噴塗法製備太陽能吸收膜之吸收率與光熱轉換表現	42
表4-1合成PU配方表	46
表4-2 PU選擇性吸收膜之成分表	48
表4-3 PU選擇性吸收膜之反射率與光熱轉換表現	57
表4-4 PU選擇性吸收膜之附著力測試	61
表4-5 Au-Water、Au-DMF、Au-DMF (clean)之XPS原子百分比	66
表A-1浸塗法製備太陽能吸收膜之吸收率	76











圖目錄
圖1-1選擇性吸收膜與非選擇性吸收膜的光譜表現	3
圖1-2太陽能吸收塗膜光譜表現	3
圖1-3各種材料粒子大小其吸收率與放射率的關係圖	5
圖2-1不同角度的大氣質量	8
圖2-2太陽輻射能與波長之關係	9
圖2-3 TSSS塗膜添加不同無機粒子之放射率比較	12
圖2-4 PU添加鋁薄片粒子以噴塗方式成膜的SEM表面圖	12
圖2-5 PU添加顏料與鋁薄片粒子以噴塗方式成膜的SEM表面圖	13
圖2-6 TISS塗膜之黏合劑濃度與放射率的影響	13
圖2-7 20TiMEMO的太陽能選擇性吸收塗料的表現	14
圖2-8製備碳-二氧化矽薄膜流程圖	15
圖2-9碳-無機氧化物製備太陽能選擇性吸收膜的光熱表現	16
圖2-10碳-氧化物吸收膜與商業化吸收膜光熱表現	16
圖2-11添加不同鎳含量比例之多層選擇性吸收膜	17
圖2-12改變錳銅比例之可見光-近紅外光吸收	19
圖2-13銅-錳比為0.5則改變浸塗速率之可見光-近紅外光吸收	19
圖2-15不同濃度PVP對可見光-近紅外光之光吸收表現	21
圖2-16 PVP在不同時間下反應的可見光波長之光吸收表現[36]	21
圖2-17不同金桿比例製備選擇性吸收膜之UV-Vis-NIR光譜	22
圖3-1 刮刀成型法之實驗設計圖	24
圖3-2 測量熱平衡溫度之截面示意圖	25
圖3-3 (a) BD20及(b) BD50之SEM表面	28
圖3-4 (a) BA20及(b) BA50之SEM表面	28
圖3-5 (a) BD20及(b) BD50之SEM截面	29
圖3-6 BA50之SEM截面	29
圖3-7刮刀塗佈法製備太陽能吸收膜測量銅片背面之光熱轉換表現	31
圖3-8 (a) DD50 (6.5 cm/min) 及(b) DD50 (1 cm/min)之SEM表面	33
圖3-9 (a) DA50 (6.5 cm/min) 及(b) DA50 (1 cm/min)之SEM表面	34
圖3-10 (a) DD50 (1 cm/min) 及(b) DA50 (1 cm/min)之SEM截面	34
圖3-11溶劑為DMF,以浸塗法製備太陽能吸收膜之UV-Vis-NIR分光光譜	36
圖3-12溶劑為丙酮,浸塗法製備太陽能吸收膜之UV-Vis- NIR分光光譜	37
圖3-13 (a) SA50 (0.056) 及(b) SD50 (0.022)之SEM表面	38
圖3-14 (a) SD20 (0.038) 及(b) SD20 (0.125)之SEM表面	39
圖3-15 (a) SD20 (0.038) 及(b) SA20 (0.045)之SEM截面	39
圖3-16噴塗法製備太陽能吸收膜之克數與吸收率關係圖(a) DMF (b)丙酮	41
圖4-1以刮刀成膜製備實驗流程圖	45
圖4-2合成PU流程圖	47
圖4-3合成PU之結構	47
圖4-4 PU5-4厚膜試片上表面之(a) SEM、(b) EDAX、(c) XRD圖	51
圖4-5 PU5-4厚膜試片下表面之(a) SEM、(b) EDAX、(c) XRD圖	52
圖4-6 PU選擇性吸收膜之SEM截面 (a)中間截面;(b)上截面	53
圖4-7 PU5-1~PU5-4選擇性吸收膜之UV-Vis-NIR分光光譜之反射率	54
圖4-8 PU5-4~PU0.625-1選擇性吸收膜之UV-Vis-NIR分光光譜之反射率	54
圖4-9 PU0.25-2~PU2.5-2選擇性吸收膜之UV-Vis-NIR分光光譜之反射率	55
圖4-10 PU5-1~PU5-4選擇性吸收膜之光熱轉換表現	56
圖4-11 PU5-4~PU0.625-1選擇性吸收膜之之光熱轉換表現	56
圖4-12 PU0.25-2~PU2.5-2選擇性吸收膜之光熱轉換表現	57
圖4-13 PU固成分5wt%,金鹽濃度變化之溫度差與吸收率比較	58
圖4-14金鹽濃度隨PU固成分降低溫度差與吸收率比較	59
圖4-15金鹽濃度3.03 mM,PU固成分變化之溫度差與吸收率比較	59
圖4-16為PU0.5-2試片之5,000倍SEM表面	60
圖4-17為PU0.5-2試片之10萬倍SEM表面	60
圖4-18不同氯離子含量的可見光光譜分析[38]	62
圖4-19不同氯離子含量的近紅外光光譜分析[38]	62
圖4-20利用氧化還原法製備選擇性吸收膜粒子	63
圖4-21 Au-Water試片之XPS銅元素能譜圖	64
圖4-22 (a) Au-DMF 及 (b) Au-DMF (clean)試片之XPS銅元素能譜圖	65
圖4-23 Au-MDF、Au-DMF(clean)及Au-Water之UV-Vis-NIR分光光譜之反射率	67
圖4-24 Au-MDF、Au-DMF(clean)及Au-Water之光熱轉換表現	67
圖A-1溶劑為DMF 50 wt%固含量商用塗料以刮刀塗膜法成膜之UV-Vis-NIR分光光譜	73
圖A-2溶劑為丙酮不同固含量商用塗料以刮刀塗膜法成膜,之UV-Vis-NIR分光光譜	73
圖A-3溶劑為DMF以噴塗法成膜UV-Vis-NIR分光光譜:(a) 20 wt%;(b) 50 wt%	74
圖A-4溶劑為丙酮以噴塗法成膜UV-Vis-NIR分光光譜:(a) 20 wt%;(b) 50 wt%	75
圖A-5 PU0.25-2與PU2.5-25之FTIR穿透率	76
圖B-1浸塗法成膜之光熱轉換表現:溶劑為(a) DMF (b)丙酮	77
圖B-2溶劑為DMF以噴塗法成膜之光熱轉換表現 (a) 20 wt% (b)50 wt%	78
圖B-3溶劑為丙酮以噴塗法成膜之光熱轉換表現 (a) 20 wt% (b)50 wt%	79
圖B-4 PU5-4厚膜上表面之XPS銅元素能譜圖	80
圖B-5 PU5-4厚膜下表面之XPS銅元素能譜圖	80
參考文獻
1.	W. F. Bogaerts, C. M. Lampert, “Materials for photothermal solar energy conversion”, Journal of Materials Science, 1983, 18, 2847-2875.
2.	C. E. Kennedy, “Review of mid to high temperature solar selective absorber materials”, National Renewable Energy Laboratory, 2002
3.	何梓年,「太陽能熱利用」,中國科學技術大學
4.	2007年能源科技研究發展白皮書,經濟部
5.	嚴文治、莊瑞誠,「真空濺鍍於太陽能光學膜之生產應用」,機械月刊第35卷第五期,2009
6.	張孝煒、莊瑞誠、葉詠津、陳文杰,太陽能及新能源學刊第12卷第2期,2006
7.	N. Etherden, T. Tesfamichael, G. A. Niklasson, E. Wäckelgård, “A theoretical feasibility study of pigments for thickness-sensitive spectrally selective paints”, Journal of Physics D: Applied Physics, 2004, 37, 1115-1122.
8.	2010年能源產業技術白皮書,經濟部
9.	張禮凱、蔡定洲、李天源、陳文杰,太陽能及新能源學刊第11卷第1、2期,2006
10.	陳維新,「能源概論」,高立圖書有限公司,93年3月初版
11.	史月艷、那鴻悅,「太陽光譜選擇性吸收膜系設計、製備、測評」,清華大學出版社
12.	G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu. Wäckelgård., “Optical, thermal and structural characteristics of carbon anoparticles embedded in ZnO and NiO as selective solar absorbers”, Solar Energy Material and Solar Cells, 2008, 91, 1285-1292.
13.	張孝煒、張禮凱、陳文杰,電子月刊第12卷第1期,2006
14.	Z. C. Orel, N. Leskovek, B. Orel, M. G. Hutchins, “Spectrally selective silicon paint coatings: Influence of pigment volume concentration ratio on their optical properties”, Solar Energy Materials and Solar Cells, 1996, 40, 197-204.
15.	L. Kaluza, A. Surca, B. Orel, G. Drazic, P. Pelicon, “Structural and IR spectroscopic analysis of sol-gel processed CuFeMnO4 spinel and CuFeMnO4/Silica films for solar absorbers”, Journal of Sol-Gel Science and Technology, 2001, 20, 61-83.
16.	L. Kaluža, B. Orel, G. Dražič, M. Kohl, “Sol–gel derived CuCoMnOx spinel coatings for solar absorbers: structural and optical properties”, Solar Energy Material and Solar Cells, 2001, 70, 187-201.
17.	B. Orel, H. Spreizer, L. Slemenik Perse, M. Fir, A. Šurca Vuk, D. Merlini, M. Vodlan, M. Köhl, “Silicone-based thickness insensitive spectrally selective (TISS) paints as selective paint coatings for coloured solar absorbers (Part I)”, Solar Energy Material and Solar Cells, 2007, 91, 93-107.
18.	B. Orel, H. Spreizer, A. Šurca Vuk, M. Fir, D. Merlini, M. Vodlanand M. Köhl., “Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II) ”, Solar Energy Material and Solar Cells, 2007, 91, 108-119.
19.	R. Kunic, M. Kozelj, B. Orel, A. Surca Vuk, A. Vilcnik, L. SlemenikPerse, D. Merlini, S. Brunold, “Adhesion and thermal stability of thickness insensitive spectrally selective (TISS) polyurethane-based paint coatings on copper substrates”, Solar Energy Material and Solar Cells, 2009, 93, 630-640.
20.	B. Japelj, A. Šurca Vuk, B. Orel, L. S. Perse, I. Jerman, J. Kovac. “Preparation of a TiMEMO nanocomposite by the sol– gel method and its application in coloured thickness insensitive spectrally selective (TISS) coatings”, Solar Energy Material and Solar Cells, 2008, 92, 1149-1161.
21.	M. Kozelj, A. Surca Vuk, I. Jerman, B. Orel, “Corrosion protection of Sunselect, a spectrally selective solar absorber coating, by (3-mercaptopropyl) trimethoxysilane”, Solar Energy Material and Solar Cells, 2009, 93, 1733-1742.
22.	G. Katumba, J. Lu, L. Olumekor, G. Westin, E. Wäckelgård, “Low cost selective solar absorber coatings: characteristics of carbon-in-silica synthesized with sol-gel technique”, Journal of Sol-Gel Science and Technology, 2005, 36, 33-43.
23.	G. Makiwa, G. Katumba, L. Olumekor, “Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers” , Proc. of SPIE Vol. 7046 70460A1-4
24.	G. Katumba, L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu. Wäckelgård., “Optical, thermal and structural characteristics of carbon anoparticles embedded in ZnO and NiO as selective solar absorbers”, Solar Energy Material and Solar Cells, 2008, 91, 1285-1292.
25.	T. Bostrom, G. Westin, E. Wäckelgård, “Solution-chemical derived nickel-alumina coatings for thermal solar absorbers”, Solar Energy Materials and Solar Cells, 2003, 74, 497-503.
26.	T. Bostrom, G. Westin, E. Wäckelgård, “Optimization of a solution-chemically derived solar absorbing spectrally selective surface”, Solar Energy Material and Solar Cell, 2007, 91, 38-43.
27.	Shuxi Zhao, E. Wäckelgård, “Optimization of solar absorbing three-layer coatings”, Solar Energy Material and Solar Cells, 2006, 90, 243-261.
28.	M. E. Rincó, J. D. Molina, M. Sánchez, C. Arancibia, E. García, “Optical characterization of tandem absorber/reflector systems based on titanium oxide–carbon coatings”, Solar Energy Material and Solar Cells, 2007, 91,  1421-1425.
29.	R. Bayon, G. San Vicente, C. Maffiotte, A. Morales, “Preparation of selective absorbers based on CuMn spinels”, Solar Energy Material and Solar Cells, 2008, 33, 348-353.
30.	R. Bayon, G. San Vicente, C. Maffiotte, A. Morales, “Characterization of copper– manganese-oxide thin films deposited by dip-coating”, Solar Energy Material and Solar Cells, 2008, 92, 1211-1216.
31.	Q. Huang, Y. Wang, J. Li, “Preparation of solar selective absorbing CuO coatings for medium temperature application”, Journal of Tianjin University, 2006, 39, 1485-1489.
32.	Q. Huang, Y. Wang, L. Han, “Preparation of molybdenum black solar selective absorbing CuO coating”, Acta Energiae Solaris Sinca, 2007, 28, 1217-1220.
33.	H. Wang, H. Wang, “Study on new colorized solar selective absorbing coating”, Acta Energiae Solaris Sinca, 2006, 27, 866-869.
34.	周政玄,“可調控式奈米光熱轉換系統及功能性奈米粒子於高分子中之分散研究”,中正大學化學研究所碩士論文,2004年
35.	C. Chou, C. Chen, C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors”, Journal of Physical Chemistry B, 2005, 109, 11135-11138.
36.	I. Pardinas-Blanco, C. E. Hoppe, Y. Pineiro-Redondo, M. A. Lopez-Quintela, “ Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near infrared-absorbing films and coatings”, Langmuir, 2008, 3, 983-990. 
37.	N. L. Stokes, J. A. McDonagh, M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass”, Journal of Nanoparticle Research, 2010, 1-10.
38.	M. Elleb, J. Meullemeestre, M. J. Schwing-Well, F. Vierling., “Stability, electronic spectra, and structure of the copper (II) chloride complexes in N,N-Dimethylformamide”, Inorganic Chemistry, 1980, 19, 2699-2704.
39.	薛建跃,氯化亞銅製備中有關離子顏色的討論和實驗改進,化學教學,2002年
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信