§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201816150800
DOI 10.6846/TKU.2018.00521
論文名稱(中文) 硼中子捕獲療法中硼試劑的應用:藉由硫醇-馬來酰胺的點擊反應使硼酸鈉(BSH)與葉酸/生物素結合
論文名稱(英文) Potential boron delivery agents for Boron Neutron Capture Therapy application: Sodium borocaptate(BSH) conjugated folic acid/biotin via thiol-maleimide "click" reaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 阮明忠
研究生(英文) MINH-TRUNG NGUYEN
學號 605185015
學位類別 碩士
語言別 英文
第二語言別
口試日期 2018-06-26
論文頁數 96頁
口試委員 指導教授 - 謝忠宏
委員 - 陳仁焜
委員 - 潘伯伸
委員 - 謝忠宏
關鍵字(中) 硼中子捕獲治療
BSH
葉酸-共軛
生物素-共軛
馬來酰胺
關鍵字(英) BNCT
BSH
Folate-conjugated
Biotin-conjugated
Maleimide
第三語言關鍵字
學科別分類
中文摘要
硼中子捕獲治療(Boron neutron capture therapy BNCT)是一種用於局部侵入性惡性腫瘤的有效試劑,其中Sodium borocaptate (BSH)鈉硼硫醇金屬簇化物,是一個有效的藥物,但是其中卻包含部分的缺點,包括無法有效進入癌細胞之中,因此在此論文,我們選擇Folic acid葉酸與Biotin生物素維生素H做為引金屬試劑,試圖克服BSH本身的缺點,並期望應用在BNCT的治療上。
    在本研究之中,我們合成出BSH非放射性20% 10B之試劑,並利用1-(2-Aminoethyl) maleimide與葉酸和生物素偶合,試圖利用其對硫醇的選擇性做為前驅藥物,利將BSH成功帶入細胞之中,而不需使用100% 10B之試劑。目前已能成功合成此二項前驅化合物,並測試其螢光指示劑之程度,同時也利用U2OS人骨肉瘤細胞測試其生物毒性,皆得到合理的成果,未來將應用在BNCT之中,使其有選擇性而可以避免100% 10B之鈉硼硫醇金屬簇化物。
英文摘要
Boron neutron capture therapy (BNCT) is a potential approach to treat cancer and Sodium borocaptate (BSH) has been used for BNCT application as a boron delivery agent. Even though, BSH were used in clinical trials, this agent till exhibits some disadvantage in the case of selective targeting of cancer cells and cellular uptake ability. Folic acid and biotin were considered as an excellent targeting ligand which can help to overcome the disadvantage of BSH in BNCT application. In this study, we prepared the natural sodium borocaptate (BSH) from natural abounded starting materials and we also successfully conjugated this potential BNCT agent with folic acid/biotin using 1-(2-Aminoethyl)maleimide as the short crosslinker. 
Folic acid/biotin-conjugated BSH exhibited the potential boron delivery agent which decreased the cytotoxicity of BSH treatment effects on U2OS cell line. Interestingly, folate-conjugated products which showed two maleimide groups and it also exhibited the high fluorescence emission. Of these, this complex might provide a new strategy to enhance and also detect the boron accumulation. These observations offered two of new BSH delivery platforms which were described as a small molecule weight and highly targeting of cancer cells which could be used as starting material in further investigation.
第三語言摘要
論文目次
Contents
Acknowledgment	I
Abstract	III
Abbreviation	V
Contents	VIII
List of Figures	XI
List of Tables	XV
List of Schemes	XVI
Chapter 1. Introduction	1
1.1. Boron Neutron Capture Therapy (BNCT)	1
1.2. Boron Delivery Agents	2
1.2.1. Boron	2
1.2.2. L- Boronophenylalanine (BPA)	5
1.2.3. Sodium borocaptate (BSH)	6
1.2.4. Improve BSH Uptake in Cancer Cells	7
1.3. Ligands and biomimetic strategies for targeted	11
1.3.1. Folate and folate receptor	11
1.3.2. Folate-based delivery application in BNCT	14
1.3.3. The blood-brain barrier (BBB) and the role of folate-based carrier	16
1.3.4. Biotin and biotin-specific uptake systems (B-SUS)	17
Chapter 2. Technical Approach	19
2.1. Preparation of compounds	19
2.1.1. Synthesis of [NEt3H]2[B12H12]	19
2.1.2. Synthesis of Na2[B12H12]	20
2.1.3. Synthesis of Sodium borocaptate Na2[B12H11SH]	20
2.1.4. Synthesis of Folic acid and Biotin conjugated BSH via Maleoylimide substituted	22
2.2. X-Ray crystallography	24
2.3. Bioactivity assessment	25
Chapter 3. Results and Discussions	27
3.1. Synthesis of BNCT agent: Sodium borocaptate (BSH)	27
3.1.1. Preparation of Na2[B12H12] from Na[BH4] and I2	27
3.1.2. Preparation Na2B12H11SH (BSH) from Na2[B12H12] and N-Methylbenzothiazole-2-thione	31
3.2. Synthesis of folate/biotin-conjugated BSH via carbonyl-reactive and sulfhydryl-reactive crosslinkers	37
3.2.1. Preparation of crosslinker, 1-(2-Aminoethyl)maleimide hydrochloride (C6H8N2O2.HCl)	37
3.2.2. Synthesis of folic acid-conjugated 1-(2-Aminoethyl)maleimide via carbonyl-reactive group	41
3.2.3. Synthesis of biotin-conjugated 1-(2-Aminoethyl)maleimide via carbonyl-reactive group	45
3.2.4. Synthesis of folate/biotin-conjugated BSH via “click” chemistry and its chemical properties	48
3.3. Fluorescence properties of conjugated products	56
3.3.1. Folate-conjugated	56
3.3.2. Biotin-conjugated products	58
3.4. Cytotoxicity	60
3.4.1. Cytotoxicity of BSH on U2OS cells	61
3.4.2. Cytotoxicity of FA-MAL and FA-MAL-BSH on U2OS cells	62
3.4.2. Cytotoxicity of BIO-MAL and BIO-MAL-BSH on U2OS cells	64
Conclusion	67
References	68
Appendix 11B NMR and 1H NMR spectra	80

List of Figures 
Figure 1-1. Two clinical boron delivery agents for BNCT [1] 4 
Figure 1-2. Folic acid structure. Blue and Red represent for pteroate and glutamate moiety, respectively 12 
Figure 1-3. Structure of FRα bound to folic acid.  13 
Figure 1-4. Folic acid affinities of FRa ligand-binding-pocket mutants. 14 
Figure 1-5. The structure of Biotin.17 
Figure 3-1. Crystal structure of Na2[B12H12].6[THF] and Na2[B12H12].4[THF]. Thermal ellipsoids are shown at the 50% probability level 29 
Figure 3-2. 11B NMR and 1H NMR of Na2B12H12 and Na2B12H11SH in comparison 33 
Figure 3-3. Crystal structure of Na2[B12H11SH] in packing complex with 18-crown-6-ether [C12H24O6], THF [C4H8O], and DMSO [C2H6OS]. Thermal ellipsoids are shown at the 50% probability level 36 
Figure 3-4. 1H NMR spectra of 1-(2-Aminoethyl)maleimide (D2O), 300 MHz : 3.25-3.28 [2H, t, CH2], 3.85-3.89 [2H, t, CH2], 6.94 [2H, s, maleimide] 39 
Figure 3-5. The crystal structure of 1-(2-Aminoethyl)maleimide hydrochloride 40 
Figure 3-6. 1H NMR spectrum in the comparison between FA-conjugated product and Folic acid. 300Hz. D2O 43 
Figure 3-7. ESI spectrum of FA-MAL with the main peak at 708.47 m/z which represents for [M+Na]+ ion and another at 686.27 which represents for [M+H]+ 44 

Figure 3-8. 1H NMR spectrum in the comparison between Biotin-conjugated product and Biotin. 300Hz. D2O  47 
Figure 3-9. ESI spectrum of BIO-MAL with the main peak at 389 m/z which represents for [M+Na]+ ion  48 
Figure 3-10. 1H NMR in the comparison between folic acid/biotin-conjugated compounds 50 
Figure 3-11. 11B NMR chemical shifts in the comparison between FA-MAL-BSH, BIO-MAL-BSH, and BSH. 600 Hz 51 
Figure 3-12. ESI spectrum of BIO-MAL-BSH 52 
Figure 3-13. ESI spectra of FA-MAL-BSH 52 
Figure 3-14. Two parallel reactions of a succinimidyl thioether in solution [68] 53 
Figure 3-15. Excitation and Emission spectra in the comparison between Folic acid with its conjugated products at 0.1 μM concentration in NaHCO3 and PBS solution. 57 
Figure 3-16. Excitation and Emission spectra in the comparison between FA-MAL and FA-MAL adding BSH (the ratio is 1:1 molar). All compound was prepared at 0.1 μM concentration in NaHCO3 and PBS solution. 58 
Figure 3-17. Excitation and Emission spectra of Biotin-conjugated products at 1 μM concentration which was prepared in DMSO  59 
Figure 3-18. Excitation and emission spectra of Biotin-conjugated products at 1 μM concentration which was prepared in PBS solution 60 
Figure 3-19. Effects of BSH with varying concentrations on the viability of U2OS cells after 24h. The results are the mean SE of 3 separate measurements. 61

Figure 3-20. Effects of FA-MAL with varying concentrations on the viability of U2OS cells after 24h. The results are the mean SE of 3 separate measurements. 62 
Figure 3-21. Effects of FA-MAL-BSH with varying concentrations on the viability of U2OS cells after 24h. The results are the mean SE of 3 separate measurements.63 
Figure 3-22. Effects of BIO-MAL with varying concentrations on the viability of U2OS cells after 24h. The results are the mean SE of 3 separate measurements.  64 
Figure 3-23. Effects of BIO-MAL-BSH with varying concentrations on the viability of U2OS cells after 24h. The results are the mean SE of 3 separate measurements.  65 
Figure 0-1. 11B NMR spectrum of Na2[B12H12] in D2O solvent, 600 MHz 80 
Figure 0-2. 11B NMR spectrum of Na2[B12H11SH] in D2O solvent, 600 MHz 81 
Figure 0-3. 11B NMR spectrum of FA-MAL-BSH in DMSO d6 solvent, 600 MHz  82 
Figure 0-4. 11B NMR spectrum of BIO-MAL-BSH in DMSO d6 solvent, 600 MHz  83 
Figure 0-5. 1H NMR spectrum of Na2[B12H12] in D2O solvent, 300 MHz  84
Figure 0-6. 1H NMR spectrum of Na2[B12H11SH] in D2O solvent, 300 MHz 85
Figure 0-7. 1H NMR spectrum of FA-MAL-BSH in DMSO d6 solvent, 600 MHz  86 
Figure 0-8. 1H NMR spectrum of BIO-MAL-BSH in DMSO d6 solvent, 600 MHz  87

Figure 0-9. 1H NMR spectrum of Boc-Ethylenediamine in CDCl3 solvent, 300 MHz88
Figure 0-10. 1H NMR spectrum of N-Boc-2-Maleimidoethylamine in CDCl3 solvent, 300 MHz  89
Figure 0-11. 1H NMR spectrum of 1-(2-Aminoethyl)- maleimide hydrochloride in CD3OD d4 solvent, 300 MHz  90
Figure 0-12. 1H NMR spectrum of Folic acid in DMSO d6 solvent, 300 MHz . 91
Figure 0-13. 1H NMR spectrum of FA-MAL in DMSO d6 solvent, 300 MHz . 92 
Figure 0-14. 1H NMR spectrum of FA-MAL in DMSO d6 solvent, 600 MHz . 93 
Figure 0-15. 1H NMR spectrum of Biotin in DMSO d6 solvent, 300 MHz 94
Figure 0-16. 1H NMR spectrum of BIO-MAL in DMSO d6 solvent, 300 MHz 95
Figure 0-17. 1H NMR spectrum of BIO-MAL in DMSO d6 solvent, 600 MHz 96

List of Tables 
Table 1-1. Boron isotopes [8] 3 
Table 3-1. 11B NMR and 1H NMR data of Na2B12H12 in D2O, 600 MHz 28 
Table 3-2. Crystallographic parameters of Na2[B12H12] in two different packing complex with THF 30 
Table 3-3. Crystal structure data of Na2[B12H12] in the comparison between of two complexes  31 
Table 3-4. 11B NMR and 1H NMR data of Na2B12H11SH in D2O, 600 MHz 33 
Table 3-5. Crystallographic parameters of Na2[B12H11SH] in packing complex with 18-crown-6-ether [C12H24O6], THF [C4H8O], and DMSO [C2H6OS] 35 
Table 3-6. Crystal structure data of Na2[B12H11SH] in complex with 18-crown-6-ether [C12H24O6], THF [C4H8O], and DMSO [C2H6OS] 36 
Table 3-7. Crystal structure data of 1-(2-Aminoethyl)maleimide hydrochloride  40 
Table 3-8. Crystallographic parameters of 1-(2-Aminoethyl)maleimide hydrochloride 41 
Table 3-9. Comparison 11B NMR data between Na2B12H11SH, FA-MAL-BSH, BIO-MAL-BSH in D2O, DMSO-d6, 600 MHz 51 
Table 3-10. Some physical and chemical properties of BSH and Folic acid/Biotin-conjugated compounds  54 
Table 3-11. Comparison IC50 of Folic acid-conjugated compounds in effect on U2OS cells viability 63 
Table 3-12. Comparison IC50 of Biotin-conjugated compounds in effect on U2OS cells viability 65 

List of Schemes 
Scheme 3-1. The N-methyl benzothiazole-2-thione routes to synthesize BSH. [54]  32 
Scheme 3-2. Maleimide thiols reaction [64]37 
Scheme 3-3. Synthesis of 1-(2-Aminoethyl)maleimide hydrochloride [58] [59] [60] [61] 38 
Scheme 3-4. Synthesis of folic acid-conjugated 1-(2-Aminoethyl)maleimide via carbonyl-reactive group 43 
Scheme 3-5. Synthesis of Biotin-conjugated 1-(2-Aminoethyl)maleimide using DMSO as the solvent, DMAP and TEA as an organic base, NHS and DCC as the additive reagent in activated step 46 
Scheme 3-6. Synthesis of Biotin-conjugated 1-(2-Aminoethyl)maleimide using DMF as the solvent and NHS, DCC as the additive reagent in activated step 46 
Scheme 3-7. Preparation of Folate-conjugated BSH via “click” chemistry 49 
Scheme 3-8. Preparation of Biotin-conjugated BSH via “click” chemistry 49
參考文獻
References

[1] 	Barth, R. F.; Soloway, A. H.; Fairchild, R. G.; Brugger, R. M., Boron Neutron Capture Therapy for Cancer: Realities and Prospects. Cancer 1992, 70 (12), 2995 - 3007.
[2] 	Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E., Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects. Clinical Cancer Research 2005, 11 (11), 3987 - 4002. 
[3] 	Coderre, J. A.; Turcotte, J. C.; Riley, K. J.; Binns, P. J.; Harling, O. K.; Kiger, W. S., Boron Neutron Capture Therapy: Cellular Targeting of High Linear Energy Transfer Radiation. Technology in Cancer Research & Treatment 2003, Vol. 2 (No. 5), 355 - 375. 
[4] 	Yura, Y.; Fujita, Y., Boron neutron capture therapy as a novel modality of radiotherapy for oral cancer: Principle and antitumor effect. Oral Science International 2013, 10, 9-14.
[5] 	Farr, L.; Sweet, W.; Locksley, H.; Robertson, J., Neutron capture therapy of gliomas using boron-10. Transactions of the American Neurological Association 1954, 79, 110–113.
[6] 	Hatanaka, H.; Sweet, W.; K., S.; Ellis, F., The present status of boron- neutron capture therapy for tumors. Pure and Applied Chemistry 1991, 63 (3), 373–74.
[7] 	Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S., Boron Neutron Capture Therapy - A Literature Review. Journal of Clinical and Diagnostic Research 2016, 10 (12), ZE01-ZE04.
[8] 	Panza, L.; Prosperi, D., Boron Chemistry. In Neutron Capture Therapy: Principles and Applications, Springer-Verlag Berlin Heidelberg: 2012; pp 77 - 98.
[9] 	Ramadan, M.; Alay, A. E., Boron Delivery Agents Used In Boron Neutron Capture Therapy For Cancer Treatment: An Overview. International Journal of Pharmaceutical Research and Bio-Science 2015, 4 (2), 14-39.
[10] 	Miyatake, S.; Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Suzuki, M.; Kondo, N.; Ono, K., Boron Neutron Capture Therapy for Malignant Brain Tumors. Neurol Med Chir (Tokyo) 2016, 56, 361-371.
[11] 	Takahara, K.; Inamoto, T.; Minami, K.; Yoshikawa, Y.; Takai, T.; Ibuki, N.; Hirano, H.; Nomi, H.; Kawabata, S.; Kiyama, S.; Miyatake, S.-I.; Kuroiwa, T.; Suzuki, M.; Kirihata, M.; Azuma, H., The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model. PLOS One 2015, 10 (9), e0136981. 
[12] 	Nemoto, H.; Cai, J.; Asao, N.; Iwamoto, S.; Yamamoto, Y., Synthesis and Biological Properties of Water-Soluble p-Boronophenylalanine Derivatives. The Relationship between Water Solubility, Cytotoxicity, and Cellular Uptake. Journal Medicinal Chemistry 1995, 38, 1673-1678.
[13] 	Heikkinen, S.; Savolainen, S.; Melkko, P., In Vitro Studies on Stability of L-p-boronophenylalanine–fructose Complex (BPA-F). Journal of Radiation Research 2011, 52, 360-364.
[14] 	Luderer, M. J.; Puente, P. d. l.; Azab, A. K., Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharmaceutical Research 2015, 32, 2824 - 2836. 
[15] 	Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y., Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Science 2015, 106, 279-286.
[16] 	Sauerwein, W. A. G.; Bet, P. M.; Wittig, A., Drugs for BNCT: BSH and BPA. In Neutron Capture Therapy: Principles and Applications, Springer: Verlag Berlin Heidelberg, 2012; pp 117 - 160.
[17] 	Barth, R. F.; Yang, W.; Rotaru, J. H.; Moeschberger, M. L.; Joel, D. D.; Nawrocky, M. M.; Goodman, J. H.; Soloway, A. H., Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood-brain barrier disruption. Cancer Research 1997, 57 (6), 1129-1136. 
[18] 	Barth, R. F.; Yang, W.; Rotaru, J. H.; Moeschberger, M. L.; Boesel, C. P.; Soloway, A. H.; Joel, D. D.; Nawrocky, M. M.; Ono, K.; Goodman, J. H., Boron neutron capture therapy of brain tumors: enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. International Journal of Radiation Oncology 2000, 47 (1), 209–218.
[19] 	Yang, F.-Y.; Chen, Y.-W.; Chou, F.-I.; Yen, S.-H.; Lin, Y.-L.; Wong, T.-T., Boron neutron capture therapy for glioblastoma multiforme: enhanced drug delivery and antitumor effect following blood-brain barrier disruption induced by focused ultrasound. Future Oncology 2012, 8 (10), 1361-1369. 
[20] 	Michiue, H.; Sakurai, Y.; Kondo, N.; Kitamatsu, M.; Bin, F.; Nakajima, K.; Hirota, Y.; Kawabata, S.; Nishiki, T.-i.; Ohmori, I.; Tomizawa, K.; Miyatake, S.-i.; Ono, K.; Matsui, H., The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 2014, 35, 3396-3405.
[21] 	Shelly, K.; Freakes, D. A.; Hawthorne, M. F.; Schmidt, P. G.; Krisch, T. A.; Bauer, W. F., Model studies directed toward the boron neutron-capture therapy of cancer: Boron delivery to murine tumors with liposomes. Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 9039-9043.
[22] 	Lee, J.-D.; Ueno, M.; Miyajima, Y.; Nakamura, H., Synthesis of Boron Cluster Lipids: closo-Dodecaborate as an Alternative Hydrophilic Function of Boronated Liposomes for Neutron Capture Therapy. Organic Letters 2007, 9 (2), 323-326.
[23] 	Koganei, H.; Ueno, M.; Tachikawa, S.; Tasaki, L.; Ban, H. S.; Suzuki, M.; Shiraishi, K.; Kawano, K.; Yokoyama, M.; Maitani, Y.; Ono, K.; Nakamura, H., Development of High Boron Content Liposomes and Their Promising Antitumor Effect for Neutron Capture Therapy of Cancers. Bioconjugate Chemistry 2013, 24, 124-132. 
[24] 	Koganei, H.; Tachikawa, S.; El-Zaria, M. E.; Nakamura, H., Synthesis of oligo-closo-dodecaborates by Hu¨isgen click reaction as encapsulated agents for the preparation of high-boron-content liposomes for neutron capture therapy. New Journal Chemistry 2015, 39, 6388.
[25] 	Pan, X. Q.; Wang, H.; Shukla, S.; Sekido, M.; Adams, D. M.; Tjarks, W.; Barth, R. F.; Lee, R. J., Boron-Containing Folate Receptor-Targeted Liposomes as Potential Delivery Agents for Neutron Capture Therapy. Bioconjugate Chemistry 2002, 13, 435-442.
[26] 	Kang, W.; Svirskis, D.; Sarojini, V.; McGregor, A. L.; Bevitt, J.; Wu, Z., Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 2017, Advance Publications, 1-14.
[27] 	Sun, T.; Li, Y.; Huang, Y.; Zhang, Z.; Yang, W.; Du, Z.; Zhou, Y., Targeting glioma stem cells enhances the anti-tumor effect of boron neutron capture therapy. Oncotarget 2016, 7 (28), 43095-43107.
[28] 	Genady, A. R., Labeled Undecahydro-closo-dodecaborates Based on Azo Dyes for Boron Neutron Capture Therapy: Synthesis, Characterization, and Visualization in Cells. Acta Chimica Slovenica 2012, 59, 89-101. 
[29] 	Cheung, A.; Bax, H. J.; Josephs, D. H.; Ilieva, K. M.; Pellizzari, G.; Opzoomer, J.; Bloomfield, J.; Fittall, M.; Grigoriadis, A.; Figini, M.; Canevari, S.; Spicer, J. F.; Tutt, A. N.; Karagiannis, S. N., Targeting folate receptor alpha for cancer treatment. Oncotarget 2016, 7 (32), 52553 - 52574. 
[30] 	Dehaini, D.; Fang, R. H.; Zhang, L., Biomimetic strategies for targeted nanoparticles delivery. Bioengineering & Translational Medicine 2016, 1, 30-46.
[31] 	Matherly, L. H.; Hou, Z., Structure, and Function of the Reduced Folate Carrier: A Paradigm of A Major Facilitator Superfamily Mammalian Nutrient Transporter. Vitamins and Hormones 2008, 79.
[32] 	Nogueira, E.; Gomes, A. C.; Preto, A.; Cavaco-Paulo, A., Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine 2016, 12, 1113-1126.
[33] 	Sodji, Q. H.; Kornacki, J. R.; McDonald, J.; Mrksich, M.; Oyelere, A. K., Design and Structure-Activity Relationship of Tumor-Homing Histone Deacetylase Inhibitors Conjugated to Folic and Pteroic Acids. European Journal of Medicinal Chemistry 2015, 96 (doi:10.1016/j.ejmech.2015.04.014), 340-359. 
[34] 	Trindade, A. F.; Frade, R. F. M.; Maçôas, E. M. S.; Graça, C.; Rodrigues, C. A. B.; Martinho, J. M. G.; Afonso, C. A. M., “Click and go”: simple and fast folic acid. Organic & Biomolecular Chemistry 2014, 12 (DOI: 10.1039/c4ob00150h), 3181-3190.
[35] 	Chen, C.; Ke, J.; Zhou, X. E.; Yi, W.; Brunzelle, J. S.; Li, J.; Yong, E.-L.; Xu, H. E.; Melcher, K., Structural basis for molecular recognition of folic acid by folate receptors. Nature 2013, 500, 486 - 490.
[36] 	Boss, S. D.; Betzel, T.; Müller, C.; Fischer, C. R.; Haller, S.; Reber, J.; Groehn, V.; Schibli, R.; Ametamey, S. M., Comparative Studies of Three Pairs of α- and γ Conjugated Folic Acid Derivatives Labeled with Fluorine-18. Bioconjugate Chemistry 2016, 27, 74 - 86. 
[37] 	Mansouria, S.; Cuieb, Y.; Winnik, F.; Shia, Q.; Lavigne, P.; Benderdoura, M.; Beaumont, E.; Fernandes, J. C., Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterial 2006, 27, 2060-2065.
[38] 	Dhas, N. L.; Ige, P. P.; Kudarha, R. R., Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technology 2015, 283, 234-245.
[39] 	Jin, H.; Pi, J.; Fenyang; Jiang, J.; Wang, X.; Bai, H.; Shao, M.; Huang, L.; Zhu, H.; PeihuiYang; Li, L.; Li, T.; Cai, J.; Chen, Z. W., Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo. Scientific Reports 2016, 6, 30782.
[40] 	Song, H.; Su, C.; Cui, W.; Zhu, B.; Liu, L.; Chen, Z.; Zhao, L., Folic Acid-Chitosan Conjugated Nanoparticles for Improving Tumor-Targeted Drug Delivery. Hindawi Publishing Corporation, BioMed Research International 2013,  (http://dx.doi.org/10.1155/2013/723158).

[41] 	Yang, S.-J.; Lin, F.-H.; Tsai, K.-C.; Wei, M.-F.; Tsai, H.-M.; Wong, J.-M.; Shieh, M.-J., Folic Acid-Conjugated Chitosan Nanoparticles Enhance Protoporphyrin IX Accumulation in Colorectal Cancer Cells. Bioconjugate Chemistry 2010, 12, 679-689.
[42] 	Fasehee, H.; Dinarvand, R.; Ghavamzadeh, A.; Esfandyari Manesh, M.; Moradian, H.; Faghihi, S.; Ghaffari, S. H., Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. Journal of Nanobiotechnology 2016, 14 (DOI 10.1186/s12951-016-0183-z), 32.
[43] 	Lee, R. J.; S.Low, P., Delivery of Liposomes into Cultured KB Cells via Folate Receptor-mediated Endocytosis. The Journal of Biological Chemistry 1994, 269 (5), 3198-3204.
[44] 	Sohail, M. F.; Javed, I.; Hussain, S. Z.; Sarwar, S.; Akhtar, S.; Nadhman, A.; Batool, S.; Bukhari, N. I.; Saleem, R. S. Z.; Hussain, I.; Shahnaz, G., Folate grafted thiolated chitosan enveloped nanoliposome with enhanced oral bioavailability and anticancer activity of docetaxel. Journal of Materials Chemistry B 2016, 4, 6240.
[45] 	Qiang, X.; Wu, T.; Fan, J.; Wang, J.; Song, F.; Sun, S.; Jiang, J.; Peng, X., Preparation and folic acid conjugation of fluorescent polymer nanoparticles for cancer cell targeting. Journal of Materials Chemistry 2012, 22, 16078.
[46] 	Dong, S.; Cho, H. J.; Lee, Y. W.; Roman, M., Synthesis and Cellular Uptake of Folic Acid-Conjugated Cellulose Nanocrystals for Cancer Targeting. Biomacromolecules 2014, 15, 1560-1567.
[47] 	Samadian, H.; Hosseini Nami, S.; Kamrava, S. K.; Ghaznavi, H.; Shakeri Zadeh, A., Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. Journal of Cancer Research and Clinical Oncology 2016, 142 (DOI 10.1007/s00432-016-2179-3), 2217-2229.
[48] 	Song, Y.; Shi, W.; Chen, W.; Li, X.; Ma, H., Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. Journal of Materials Chemistry 2012, 22 (DOI: 10.1039/c2jm31582c), 12568.
[49] 	Shukla, S.; Wu, G.; Chatterjee, M.; Yang, W.; Sekido, M.; Diop, L. A.; Muller, R.; Sudimack, J. J.; Lee, R. J.; Barth, R. F.; Tjarks, W., Synthesis and Biological Evaluation of Folate Receptor-Targeted Boronated PAMAM Dendrimers as Potential Agents for Neutron Capture Therapy. Bioconjugate Chemistry 2003, 14, 158-167.
[50] 	Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A., Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiform Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy. Nanoscale Research Letters 2009, 4 (DOI 10.1007/s11671-008-9210-9), 113-121.
[51] 	Achilli, C.; Jadhav, S. A.; Guidetti, G. F.; Ciana, A.; Abbonante, V.; Malara, A.; Fagnoni, M.; Torti, M.; Balduini, A.; Balduini, C.; Minetti, G., Folic Acid-Conjugated 4-Amino-phenyl boronate, a Boron-Containing Compound Designed for Boron Neutron Capture Therapy, is an Unexpected Agonist for Human Neutrophils and Platelets. Chemical Biology & Drug Design 2014, 83, 532-540.
[52] 	Daneman, R.; Prat, A., The Blood-Brain Barrier. Cold Spring Harbor Perspectives in Biology 2015, 7. 
[53] 	Wu, D.; Pardridge, W. M., Blood-Brain Barrier Transport of Reduced Folic Acid. Pharmaceutical Research 1999, 16 (3), 415-419.
[54] 	Ren, W. X.; Han, J.; Uhm, S.; Jang, Y. J.; Kang, C.; Kim, J.-H.; Kim, J. S., Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chemical Communications 2015, 51 (DOI: 10.1039/c5cc03075g), 10403.
[55] 	Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I., Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release. Bioconjugate Chemistry 2010, 21 (5), 979-987.
[56] 	Griffiths, G. L.; Govindan, S., Boron neutron capture therapy using pre-targeting methods. U.S. Patent No. 5,846,741 1998.
[57] 	Tolpin, E. I.; Wellum, G. R.; Berley, S. A., Synthesis, and chemistry of Mercaptoundecahydro-closo-dodecaborate(2-). Inorganic Chemistry 1978, 17 (10).
[58] 	Grate, J. W.; Mo, K.-F.; Daily, M. D., Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone–Backbone Interaction Motifs. Angewandte Chemie International Edition 2016, 55, 3925 –3930.
[59] 	Dorner, F.; Boschert, D.; Schneider, A.; Hartleb, W.; Al-Ahmad, A.; Lienkamp, K., Toward Self-Regenerating Antimicrobial Polymer Surfaces. ACS Macro Letters 2015, 4, 1337-1340.
[60] 	Kuang, X.; Liu, G.; Dong, X.; Liu, X.; Xu, J.; Wang, D., Facile Fabrication of Fast Recyclable and Multiple Self-healing Epoxy Materials through Diels-Alder Adduct Cross-linker. Journal of Polymer Science, Part A: Polymer Chemistry 2015, 53, 2094–2103. 
[61] 	Uehara, T.; Rokugawa, T.; Kinoshita, M.; Nemoto, S.; Gomez, G.; Lazaro, F.; Hanaoka, H.; Arano, Y., 67/68Ga-Labeling Agent That Liberates 67/68Ga-NOTA-Methionine by Lysosomal Proteolysis of Parental Low Molecular Weight Polypeptides to Reduce Renal Radioactivity Levels. Bioconjugate Chemistry 2014, 25, 2038−2045. 
[62] 	Prakash, S.; Hazari, P. P.; Meena, V. K.; Jaswal, A.; Khurana, H.; Kukreti, S.; Mishra, A. K., Biotinidase Resistant 68Gallium-Radioligand Based on Biotin/Avidin Interaction for Pretargeting: Synthesis and Preclinical Evaluation. Bioconjugate Chemistry 2016, 27, 2780−2790.
[63] 	Geis, V.; Guttsche, K.; Knapp, C.; Scherer, H.; Uzun, R., Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2-. Dalton Transactions 2009, 2687 - 2694
[64] 	Hermanson, G. T., Bioconjugate Techniques. Elsevier: 2013. 
[65] 	Plazuk, D.; Zakrzewski, J.; Salmain, M.; Błauz, A.; Rychlik, B.; Strzelczyk, P.; Bujacz, A.; Bujacz, G., Ferrocene−Biotin Conjugates Targeting Cancer Cells: Synthesis, Interaction with Avidin, Cytotoxic Properties and the Crystal Structure of the Complex of Avidin with a Biotin−Linker−Ferrocene Conjugate. Organometallics 2013, 32, 5774 - 5783.
[66] 	Prakash, S.; Hazari, P. P.; Meena, V. K.; Jaswal, A.; Khurana, H.; Kukreti, S.; Mishra, A. K., Biotinidase Resistant 68Gallium-Radioligand Based on Biotin/Avidin Interaction for Pretargeting: Synthesis and Preclinical Evaluation. Bioconjugate Chemistry 2016, 27, 2780−2790.
[67] 	Su, J.; Qian, C.; Luo, N.; Xiang, X.; Xu, Y.; Chen, X., Experimental Measurement and Modeling of the Solubility of Biotin in Six Pure Solvents at Temperatures from 298.15 K to 333.85 K. Journal of Chemical & Engineering data 2014, 59, 3894 - 3899.
[68] 	Fontaine, S. D.; Reid, R.; Robinson, L.; Ashley, G. W.; Santi, D. V., Long-Term Stabilization of Maleimide−Thiol Conjugates. Bioconjugate Chemistry 2014, 26, 145-152. 
[69] 	Liew, Y.-F.; Huang, C.-T.; Chou, S.-S. P.; Kuo, Y.-C.; Chou, S.-H.; Leu, J.-Y.; Tzeng, W.-F.; Wang, S.-J.; Tang, M.-C.; Huang, R.-F. S., The Isolated and Combined Effects of Folic Acid and Synthetic Bioactive Compounds against Aβ(25-35)-Induced Toxicity in Human Microglial Cells. Molecules 2010, 15, 1632-1644.
[70] 	Duggan, D. E.; Robert L. Bowan, B. B. B.; Undenfriend, S., A Spectrophotofluorometric Study of Compounds of Biological Interest. Archives of Biochemistry and Biophysics 1957, 68, 1-14.
[71] 	Niforou, K. N.; Anagnostopoulos, A. K.; Vougas, K.; Kittas, C.; Gorgoulis, V. G.; Tsangaris, G. T., The proteome profile of the human osteosarcoma U2OS cell line. Cancer Genomics & Proteomics 2008, 5 (1), 63-78.
[72] 	Doi, A.; Kawabata, S.; Iida, K.; Yokoyama, K.; Kajimoto, Y.; Kuroiwa, T.; Shirakawa, T.; Kirihata, M.; Kasaoka, S.; Maruyama, K.; Kumada, H.; Sakurai, Y.; Masunaga, S.-I.; Ono, K.; Miyata, S.-I., Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. Journal Neurooncology 2008, 87, 287-294.
[73] 	Yoshidaa, F.; Matsumuraa, A.; Yamamotoa, T.; Kumadab, H.; Nakai, K., Enhancement of sodium borocaptate (BSH) uptake by tumor cells induced by glutathione depletion and its radiobiological effect. Cancer Letters 2004, 215, 61-67.
[74] 	Yang, R.; Kolb, E. A.; Qin, J.; Chou, A.; Sowers, R.; Hoang, B.; Healey, J. H.; Huvos, A. G.; Meyers, P. A.; Gorlick, R., The Folate Receptor A Is Frequently Overexpressed in Osteosarcoma Samples and Plays a Role in the Uptake of the Physiologic Substrate 5-Methyltetrahydrofolate. Clinical Cancer Research 2007, 13 (9), 2557-2567. 
[75] 	Liu, Z.; Jin, X.; Pi, W.; Liu, S., Folic acid inhibits nasopharyngeal cancer cell proliferation and invasion via activation of FRα/ERK1/2/TSLC1 pathway. Bioscience Reports 2017, 37 (BSR20170772), 1-11. 
[76] 	Pellis, L.; Dommels, Y.; Venema, D.; Polanen, A. v.; Lips, E.; Baykus, H., High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells. British Journal of Nutrition 2008, 99, 703-708.
[77] 	Trüeb, R. M., Serum Biotin Levels in Women Complaining of Hair Loss. International Journal of Trichology 2016, 8 (2), 73-77.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信