淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1807201811455000
中文論文名稱 高層建築受干擾效應下氣動力阻尼影響
英文論文名稱 Investigation on aerodynamic damping of high-rise building under interference effect .
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生中文姓名 林珮萱
研究生英文姓名 Pei-Hsuan Lin
學號 606380060
學位類別 碩士
語文別 中文
口試日期 2018-07-05
論文頁數 92頁
口試委員 指導教授-羅元隆
委員-王人牧
委員-傅仲麟
委員-羅元隆
中文關鍵字 干擾效應  氣動力阻尼  氣彈力行為  隨機衰減法  高層建築物  小波理論 
英文關鍵字 Interference effect  Aerodynamic damping  Aero-elastic vibration  Random decrement technique  High-rise Building  wavelet-based demodulation method 
學科別分類 學科別應用科學土木工程及建築
中文摘要 現今建築物耐風設計規範對於鄰近建築物的干擾效應缺少規範建議,且一般來說都市地形周遭環境甚為複雜,因此多半必須採用風洞試驗作為設計風力的依據。本研究探討兩棟方柱形建築物之間風力對於彼此所造成之干擾效應影響,比較氣動力阻尼在干擾效應影響下及沒有干擾效應下的差異性。此外,高層建築物受風力作用的位移計算,橫風向氣動力行為複雜,尤其在低史庫頓數(低質量、低阻尼)的高層建築結構時,會因風力造成過大的位移反應,導致氣動力不穩定之現象,對結構物產生極大危害。因此本研究特別針對低史庫頓數的結構系統進行討論。
風洞實驗由指導教授羅元隆老師於2017年8月於東京工藝大學風工程研究中心完成。採用試驗段斷面為18×1.8×2.2m的大氣邊界層風洞進行氣彈力振動試驗。以B地況(∝=0.2)作為逼近流場,模型高長度縮尺為1/400,改變12個約化風速(6.5,7.5,8.3,9.0,9.7,10.5,11.0,11.5,12.2,13.1,13.8和14.6)作為探討不同約化風速下橫風向振動行為的氣動力特性評估。模型斷面分別以矩形模型寬度(B)和深度(D)均為0.07m,高度(H)為0.56m,高寬比8;梯形模型頂部寬度為0.04m,底部寬度為0.1m,高度與矩形高度相同,高寬比(高度與平均寬度)也是8,體積與矩形模型相同,以此基本性質做為比較基準。加入剛性棒狀物體作為干擾建物斷面。干擾位置共20個位置。
本研究以實驗結果作為探討,針對高層建築物受干擾效應下的氣動力阻尼行為改變,不同實驗設置包含不同干擾位置之變化;不同主要建築物所造成的結構反應;不同約化風速與不同干擾建築物(固定干擾與振動干擾)之影響等四項可能因素。利用兩種計算氣動力阻尼之方式:隨機衰減法、小波理論。本研究中首先進行兩種方法論的計算結果比較,確定相符後,採用其中一種進行氣動力阻尼值的探討,並期望在氣彈力實驗中找出其無法預估的結構氣動力之現象,當結構物因為風力而產生振動時兩棟建築物之間交互影響作用,針對其氣動力阻尼值與擾動位移反應相關的分布進行比較,顯示出氣動力阻尼的改變將導致擾動位移變化。
英文摘要 There is no standard recommendation for the interference effect of buildings wind-resistance design specifications on neighboring buildings, and generally, the surrounding environment of urban terrain is very complicated. Therefore, wind tunnel tests must be used as the basis for wind design. This study investigates the effect of wind forces on the mutual interference caused by two square pillar buildings, and compares the effects of aerodynamic damping under the influence of disturbance effects and without interference effects. In addition, the calculation of the displacement of high-rise buildings due to wind forces, the transverse wind aerodynamic behavior is complex, especially when the low-scruton number (low-quality and low-damping) high-rise building structure, due to wind caused by excessive displacement response, resulting in aerodynamic. The phenomenon of unstable force has great harm to the structure. Therefore, this study specifically discusses the structural system of the low Scruton number.
The wind tunnel experiment about the aero-elastic vibration test is conducted in the 18.0 × 1.8 × 2.2 m boundary layer wind tunnel which is conducted by the guidance professor Professor Lo Yuanlong at Wind Engineering Research Center at Tokyo Polytechnic University in August 2017. A 1/400 scale turbulent flow over a sub-urban terrain with a power law index exponent for mean velocity profile of 0.2 is simulated with properly equipped spires, saw barriers, and roughness blocks. Changing 12 reduced wind speeds (6.5, 7.5, 8.3, 9.0, 9.7, 10.5, 11.0, 11.5, 12.2, 13.1, 13.8, and 14.6). As a study of the aerodynamic characteristics of across-wind vibratory behavior under different reduced wind speeds, the square prism model is 0.07 m in both width (B) and depth (D) and 0.56 m in height (H), which make the aspect ratio (H/B) 8. The tapered model is 0.04 m in width on the roof-top and 0.10 m in width on the bottom. The height is the same as the square one and the aspect ratio (height to the averaged width) is also 8. Both the two principal building models are manufactured in the same volume in order to have a basic comparison level. Addiction the interfering model which is made rigid-pivoted aero-elastic and tuned to vibrate in the same fundamental frequency as the principal building models. There are 20 interference locations.
In this study, experimental results are used to investigate the aerodynamic damping behavior of high-rise buildings under disturbance effects. Different experimental settings include changes in different interference positions; structural responses caused by different major buildings; different reduced wind speeds and different interferences Four possible factors such as the impact of buildings (rigid interference and vibration). Two methods for calculating aerodynamic damping are used: random decay method, wavelet theory. In this study, firstly, the comparison of the calculation results of the two methodologies was performed. After the determination, the aerodynamic damping value was discussed using one of them. It was expected that the aerodynamic forces could not be estimated in the aeroelastic experiment. The interaction between the two buildings when vibration occurs due to wind force is compared with the distribution of the aerodynamic damping value and the disturbance displacement response. It is shown that changes in the aerodynamic damping will lead to changes in the disturbance displacement.
論文目次 目錄
目錄I
表目錄IV
圖目錄V

第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 研究內容 3
1.4 論文架構 4
第二章 文獻回顧 5
2.1 風洞實驗之模擬 5
2.1.1 大氣邊界層之模擬 5
2.1.2 阻塞效應 6
2.1.3 雷諾數效應 6
2.2 干擾效應之於主要建物的風力影響 7
2.2.1 整體風力影響之定性描述 7
2.2.2 以干擾因子定義之定量描述 9
2.3 氣動力阻尼之經驗公式 10
2.3.1 順風向 10
2.3.2 橫風向 11
第三章 理論背景 12
3.1 大氣邊界層特性 12
3.1.1 平均風速剖面 12
3.1.2 紊流強度 13
3.1.3 紊流長度尺度 14
3.1.4 縱向擾動風速頻譜 15
3.2 隨機數據分析理論(隨機衰減法與小波理論) 16
3.2.1 隨機數據 16
3.2.2 隨機衰減法 17
3.2.3 小波理論基本理論 18
3.2.4 應用小波理論計算阻尼比 18
3.3 鈍體空氣動力學 20
3.3.1 氣動力現象 20
3.3.2 氣彈力現象 22
3.3.3  風速、風力與結構振動反應之關係 23
3.3.4 結構動力學基本定理 24
3.4 受風載重下結構物的位移反應計算 26
3.4.1 結構動力學基本定理 26
3.4.2 風力作用下的位移反應計算 27
第四章 實驗設置與數據處理分析 31
4.1 實驗設置 31
4.1.1 風洞 31
4.1.2 模型 31
4.1.3 量測儀器 32
4.1.4 大氣邊界層流場模擬 34
4.2 數據採樣 34
4.3 氣彈力模型之模擬、率定、量測及數據分析 35
4.3.1 自由振動 35
4.3.2 結構頻率分析 36
4.4 阻尼之識別 37
4.4.1 隨機衰減法: 37
4.4.2 小波理論 37
4.4.3 阻尼比 37
4.4.4 馳振指數: 39
第五章 實驗結果與討論 40
5.1 單棟建築物效應 40
5.1.1 主要建物無風下 40
5.1.2 主要建物受風下 40
5.2 方柱效應(包含固定干擾建物與振動干擾建物) 41
5.2.1 干擾建物置於主要建物前方 42
5.2.2 干擾建物置於主要建物左前方 42
5.2.3 干擾建物置於主要建物左方 42
5.2.4 干擾建物置於主要建物左後方 43
5.2.5 干擾建物置於主要建物後方 43
5.3 梯形柱與方柱之比較 43
5.3.1 干擾建物置於主要建物前方 44
5.3.2 干擾建物置於主要建物左前方 44
5.3.3 干擾建物置於主要建物左方 45
5.3.4 干擾建物置於主要建物左後方 46
5.3.5 干擾建物置於主要建物後方 47
5.4 氣動力阻尼之綜合比較 48
5.4.1 干擾建物置於主要建物前方 48
5.4.2 干擾建物置於主要建物左前方 49
5.4.3 干擾建物置於主要建物左方 49
5.4.4 干擾建物置於主要建物左後方 50
5.4.5 干擾建物置於主要建物後方 50
第六章 結論與建議 51
6.1 結論 51
6.2 建議 53
參考文獻 54
附表 59
附圖 61


表目錄

表3-1 不同地況之指數律參數 59
表3-2 不同地況之地表粗糙長度尺度 59
表3-3 地表粗糙長度尺度對應之β 59
表4-1 主要建物(矩形與梯形之參數) 59
表4-2 本研究氣彈實驗所假設的各項相似性比例縮尺 60
表4-3 自由振動歷時資料頻率域分析 60
表4-4 實驗參數 60

圖目錄

圖3-1紊流長度尺度參數C、m與高度Z_0關係圖 61
圖3-2鈍體分離流及渦漩示意圖 61
圖3-3 風引致結構順風向反應之分析流程 62
圖4-1東京工藝大學邊界層風洞 62
圖4-2主要建物模型示意圖(梯形柱與方柱) 63
圖4-3干擾建物與主要建物位置示意圖 63
圖4-4干擾建物與主要建物位置示意圖與實際照片 64
圖4-5座標版配置示意圖 64
圖4-6座標版與建築物配置照片 65
圖4-7 IFA-300智慧型風速儀、探針及校正儀 65
圖4-8雷射位移計 66
圖4-9總電源照片 66
圖4-10東京工藝大學大氣邊界層風洞實驗室擾流板與粗糙元素擺設示意圖 67
圖4-11 B地況之平均風速剖面、紊流強度剖面及模型高風速剖面 67
圖4-12氣彈架構 68
圖4-13自由振動模型位移歷時 68
圖4-14 原始時間歷時經隨機衰減法變成自由振動曲線 69
圖4-15 小波理論分析圖 69
圖4-16 主要建物在橫風向的自由振動 70
圖4-17 擾動位移與系統原有阻尼–經驗公式 70
圖5-1 干擾位移與約化風速比較文獻關係圖(Scr=1.18) 71
圖5-2 干擾位移與約化風速比較文獻關係圖(Scr=1.18) 71
圖5-3 干擾位移與風速比較文獻關係圖(Scr=1.18) 72
圖5-4 單棟有風下約化風速與阻尼值之關係 72
圖5-5 方柱效應-干擾建物置於主要建物前方 73
圖5-6 方柱效應-干擾建物置於主要建物左前方 74
圖5-7 方柱效應-干擾建物置於主要建物左方 75
圖5-8 方柱效應-干擾建物置於主要建物左後方 76
圖5-9 方柱效應-干擾建物置於主要建物後方 77
圖5-10 干擾建物置於主要建物前方之擾動位移反應 78
圖5-11 干擾建物置於主要建物左前方之擾動位移反應 79
圖5-12 干擾建物置於主要建物左方之擾動位移反應 80
圖5-13 干擾建物置於主要建物左後方之擾動位移反應 81
圖5-14 干擾建物置於主要建物後方之擾動位移反應 82
圖5-15 干擾建物置於主要建物前方之結構總阻尼折線圖 83
圖5-16 干擾建物置於主要建物左前方之結構總阻尼折線圖 84
圖5-17 干擾建物置於主要建物左方之結構總阻尼折線圖 85
圖5-18 干擾建物置於主要建物左後方之結構總阻尼折線圖 86
圖5-19 干擾建物置於主要建物後方之結構總阻尼折線圖 87
圖5-20 干擾建物置於主要建物前方之氣動力阻尼折線圖 88
圖5-21 干擾建物置於主要建物左前方之氣動力阻尼折線圖 89
圖5-22 干擾建物置於主要建物左方之氣動力阻尼折線圖 90
圖5-23 干擾建物置於主要建物左後方之氣動力阻尼折線圖 91
圖5-24 干擾建物置於主要建物後方之氣動力阻尼折線圖 92

參考文獻 [1] American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
[2] Architectural Institute of Japan (AIJ),2004.
[3] Bailey, P.A., Kwok, K.C.S., 1985. Interference excitation of twin tall buildings. J. Wind Eng. Ind. Aerodyn. 21, 323-338.
[4] Blessmann, J., Riera, J. D., 1985, “Wind excitation of neighboring tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 18, 91-103.
[5] Cowdery,1986, “Two topics of interesting experimental industrial aerodynamic”, symposium on wind effects on buildings and structures, National physical laboratory, Teddington.
[6] Davenport, 1961, “The Relationship of Wind Structure to Wind Loading”, Proc. Symp. On Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, pp.53-102.
[7] Davenport, A.G., “Gust loading factors”, J. of Structure Division, ASCE, Vol. 93, No.st3, June 1967, p11-34
[8] English, E. C., 1985, “Shielding factors from Wind-Tunnel studies of Mid-Rise and High-Rise structures”, Proceedings Fifth U. S. Conference on Wind Engineering.
[9] English, E. C., 1990, “Shielding factors from wind-tunnel studies of prismatic structures”, Journal of Wind Engineering and Industrial Aerodynamics, 36, 611-619
[10] Cowdery,1986, “Two topics of interesting experimental industrial aerodynamic”, symposium on wind effects on buildings and structures, National physical laboratory, Teddington.
[11] Fuh-Min Fang‚Cheng-Yang Chung‚Yi-Chao Li ‚Wen-Chin Liu and Perng-Kwei Lei‚ “The acrosswind response of the downwind prism in a twin-prism system with a sraggered arrangement” ‚Wind and Structures‚ Vol.17‚No.3 ,2013. 245-262‚254-255‚261.
[12] Fuh-Min Fang,Cheng-Yang Chung,Yi-Chao Li,Wen-Chin Liu and Perng-Keei Lei,2013.The acrosswind response of the downwind prism in a twin-prism system with a staggered arrangement. Wind and structures, Vol.17, No.3, pp. 5,13,18.
[13] Gu, M., 2004, “Mean interference effects among tall buildings”, Engineering Structures 26 1173-1183.
[14] Huang, P., Gu, M., 2005, “Experimental study on wind-induced dynamic interference effects between two tall buildings”, Wind and structures, Vol.8, No.3, pp. 147-161.
[15] Hui, Y., Tamura, Y., Yoshida, A., 2012. Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients. J. Wind Eng. Ind. Aerodyn. 104-106, 98-108.
[16] Hui, Y., Tamura, Y., Yoshida, A., Kikuchi, H., 2013a. Pressure and flow field investigation of interference effects on external pressures between high-rise buildings. J. Wind Eng. Ind. Aerodyn. 115, 150-161.
[17] Hui, Y., Yoshida, A., Tamura, Y., 2013. Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients. J. Fluids Struct. 37, 120-133.
[18] Hunt, 1982, “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales” J. Wind Eng. Ind. Aero., Vol. 10, pp.137-163.
[19] Irwin, H.P.A.H., 1981, “The Design of Spire for Wind Simulation”, J. of Wind Engineering and Industrial Aerodynamics, Vol.7, p361-366.
[20] J. Cockrell and S. E. Lee, 1964, “Methods and consequences of atmospheric boundary layer simulation”, paper 13-AGARD conference proc. No.48 on aerodynamic of atmospheric shear flows, Munich.
[21] J. Counihan, 1970, “Further Measurements in a Simulated Atmospheric Bounday Layer”, Atmospheric Environment, Vol.4, pp.159-275.
[22] J. Counihan, 1973, “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.673-689.
[23] J. E. Cermak, J. A. Peterka, 1974, “Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections”, Center for Building Technology, IAT, National Bureau of Standards Washington, D.C., June.
[24] J. M. Biggs, 1954, “Wind Load on Truss Bridges”, ASCE, pp.879.
[25] Jesen, M., 1958, “The Model Law for Phenomena in Natural Wind” Ingeioen International Edition, Vol.2, No.4, pp.121-123.
[26] Kareem, A., 1987, “The effect of aerodynamic interference on the dynamic response of prismatic structures”, J. Wind Eng. Ind. Aero., Vol.25., pp.365-372.
[27] Kawai, H., 1992, “Vortex Induced Vibration of tall building”, J. of Wind Engineering and Industrial Aerodynamics, Vol.44-44, p117-p128
[28] Kawai, H., 1992. Vortex induced vibration of tall buildings. J. Wind Eng. Ind. Aerodyn. 41-44, 117-128.
[29] Khanduri, A. C., Stathopoulos, T., Bedard, C., 1998, “Wind-induced interference effects on buildings—a review of the state-of-the-art”, Eng. Struct., 20(7), 617–630.
[30] Khanduri, A.C., Stathopoulos, T., Bedard, C., 2000. Generalization of wind-induced interference effects for two buildings. Wind & Struct. 3(4), 255-266.
[31] Kim, W.S., Tamura, Y., Yoshida, A., 2011. Interference effects on local peak pressures between two buildings. J. Wind Eng. Ind. Aerodyn. 99, 584-600.
[32] Kim, W.S., Tamura, Y., Yoshida, A., 2013. Simultaneous measurement of wind pressures and flow patterns for buildings with interference effect. Advances Struct. Eng. 16(2), 287-305.
[33] Kim, W.S., Tamura, Y., Yoshida, A., 2015. Interference effects on aerodynamic wind forces between two buildings. J. Wind Eng. Ind. Aerodyn. 147, 186-201.
[34] Kwork, k.c.s., Melbourne, W, H., “Wind-induced Lock-in Excitation of tall structures”, of Structural Division, Vol. 107,1981, No.st1, p57-72
[35] Lam, K.M., Leung, M.Y.H., Zhao, J.G., 2008. Interference effects on wind loading of a row of closely spaced tall buildings. J. Wind Eng. Ind. Aerodyn. 96, 562-583.
[36] Lam, K.M., Zhao, J.G., Leung, M.Y.H., 2011. Wind-induced loading and dynamic responses of a row of tall buildings under strong interference. J. Wind Eng. Ind. Aerodyn. 99, 573-583.
[37] Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure model. Physics of Fluids 4, 633–635.
[38] Lo, Y.L., Kim, Y.C., Li, Y.C., 2016. Downstream interference effect of high-rise buildings under turbulent boundary layer flow. J. Wind Eng. Ind. Aerodyn. 159, 19-35.
[39] Luo, S.C., Li, L.L., Shah, D. A., 1999. Aerodynamic stability of the downstream of two tandem square-section cylinders. J. Wind Eng. Ind. Aerodyn. 79, 79-103.
[40] Mara, T.G, Terry, B. K., Ho, T. C. E., Isyumov, N., 2014, “Aerodynamic and peak response interference factors for an upstream square building of identical height”, J. Wind Eng. Ind. Aerodyn., 133, 200–210.
[41] N. J. Cook, 1973, “On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.691-705.
[42] N. M. Standen, 1972, “A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels”, Rep. LTR-LA-94, National Aeronautical Establishment, Ottawa, Canada.
[43] R. E. Whitbread, 1963, “Model Simulation of Wind Effects on Structures” Proceeding of the Conference on Wind Effects on Buildings and Structures, pp.284-306.
[44] R. V. Barret,1972, “A Versatile Compact Wind Tunnel for Industrial Aerodynamics”, Technical note, Atmospheric Environment, Vol.6, pp.491-495.
[45] Sakamoto, H., Haniu, H., 1988, “Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, 31, 41-66.
[46] Sakamoto, H., Haniu, H., 1988, “Effect of free-stream turbulence on Characteristics of fluctuating forces acting on two square prisms in tandem arrangement”, Trans. ASME, Vol. 110, 140-146.
[47] Saunders, J.W., Melbourne, W.H., 1979. Buffeting effects of upstream buildings. In: Proceedings of the Fifth International Conference on Wind Engineering, Fort Collins, Colorado. Pergamon Press, Oxford, 593-608
[48] Surry, D., Mallais, W., 1983. Adverse local wind loads induced by adjacent building. J. Sruct. Eng. ASCE 108, 816-821
[49] Takeo Matsumoto, “ On the across-wind oscillation of tall building”, J. of Wind Engineering and Industrial Aerodynamics, 24,1986, p69-85
[50] Tang, U.F., Kwok, K.C.S., 2004. Interference excitation mechanisms on a 3DOF aeroelastic CAARC building model. J. Wind Eng. Ind. Aerodyn. 92, 1299-1314.
[51] Taniike, Y., 1991. Turbulence effect on mutual interference of tall buildings. J. Eng. Mech. 117(3), 443-456.
[52] Taniike, Y., 1992. Interference mechanism for enhanced wind forces on neighboring tall buildings. J. Wind Eng. Ind. Aerodyn. 41-44, 1073-1083.
[53] Thepmongkorn, S., Wood, G.S., Kwok, K.C.S., 2002. Interference effects on wind-induced coupled motion of a tall building. J. Wind Eng. Ind. Aerodyn. 90, 1807-1815.
[54] Townsend, (1956), “The structure of turbulent shear flow”, Cambridge Univ. Press. Pp. 315
[55] Vickery, B. J., 1996, “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream”, J. of Fluid Mech., Vol.22 p481-p494
[56] Xie, Z. N., Gu, M., 2004, “Mean interference effects among tall buildings”, Engineering Structures, 26, 1173-1183.
[57] Xie, Z.N., Gu, M., 2007. Simplified formulas for evaluation of wind-induced interference effects among three tall buildings. J. Wind Eng. Ind. Aerodyn. 95, 31-52.
[58] Y. Nakamura, Y. Ohya, 1984, “The effects of turbulence on the mean flowpast two dimensional rectangular cylinders”, J. of Fluid. Mech., Vol.149, pp.255-273.
[59] Yahyai, M., Kumar, K., Krisha, P., Pande, P. K., 1992. Aerodynamic interference in tall rectangular buildings. J. Wind Eng. Ind. Aerodyn. 41-44, 859-866
[60] Yuan-Lung Lo,Yong Chul Kim,and Yi-Chao Li,2016. Downstream interference effect of high-rise building under turbulent boundary layer low. .WindEng.Ind.Aeroddyn.159(19-35),31-32.
[61] Yukio Tamura ‚“Amplitude dependency of damping in Building and critical tip drift ratio” ‚ International Journal of High-Rise Buildings March, 2012.Vol 1 ‚No 1 ‚1-13‚ 9-13.
[62] Zhang, W.J., Xu, Y.L., Kwok, K.C.S., 1995. Interference effects on aeroelastic torsional response of structurally asymmetric tall buildings. J. Wind Eng. Ind. Aerodyn. 57, 41-61.
[63] 建築物結構荷重規範(GB 50009),2012
[64] 林倚仲,2005,“干擾效應對高層建築設計風力的影響”,淡江大學土木工程研究所碩士論文。
[65] 盧博堅、鄭啟明、賴建志,1987,“邊界層中三方柱體群縱向與橫向排列所受風力之交互作用”,The Chinese Journal of Mechanics, Vol.11., pp.185-193.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信