§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201612223100
DOI 10.6846/TKU.2016.00494
論文名稱(中文) 無人飛行載具數學模型建置與馬達特性檢測系統設計
論文名稱(英文) UAV Mathematical Model Building and Design of a Characteristics Measurement System for Motors
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 王議平
研究生(英文) Yi-Ping Wang
學號 603460022
學位類別 碩士
語言別 英文
第二語言別
口試日期 2016-07-07
論文頁數 37頁
口試委員 指導教授 - 劉寅春(pliu@mail.tku.edu.tw)
委員 - 邱謙松
委員 - 李世安
關鍵字(中) 無人飛行載具
馬達檢測系統
馬達參數
關鍵字(英) UAV
motor parameter
Characteristics Measurement System for Motors
第三語言關鍵字
學科別分類
中文摘要
本論文以靈活飛行的無人機為研究基礎,建立四旋翼機數學模型與無刷馬達特性檢測系統,以期能得到接近實際飛行結果之四旋翼機動態模擬。
    建立四旋翼機數學模型可令使用者於實際飛行前確認自身四旋翼機飛行姿態及飛行路徑,並從中調整控制器參數以避免實際飛行時因控制參數問題而導致墜落。本論文設計一PD控制器於四旋翼機姿態控制,一PID控制器於四旋翼機位置控制,以穩定飛行路徑及飛行姿態。
    馬達參數在過去是藉由廠商所提供之馬達與螺旋槳規格參數,結合各種阻力與能量耗損,並透過繁雜運算所得。本論文設計一組馬達特性檢測系統,透過量測馬達與螺旋槳結合後旋轉所得之轉速、升力與扭矩,並經過簡單計算即可取得馬達參數。
    最後為證明四旋翼機馬達參數之重要性,輸入指定飛行任務點,經由實驗得出四旋翼機之模擬姿態、位置與馬達轉速於不同馬達參數下所得之不同響應,藉此驗證正確馬達參數的重要性。並將模擬結果以三維空間表示,模擬四旋翼機於空間中飛行之任務軌跡,及其姿態。
英文摘要
This paper research is based on flexible flight quadcopter. Building quadcopter mathematical model and design of a characteristics measurement system for motors to get the quadcopter dynamic simulation close to the real flight.
   Building quadcopter mathematical model can make user confirm there quadcopter’s flight position and attitude. It can also modify controller parameters before they flight. In this paper we design a PD controller in quadcopter attitude control and design a PID controller in quadcopter position control.
   In the past, motor parameter is be gotten from compute motor and propeller’s parameter and lots of resistance and coefficient in many complex formulas. This paper design of a characteristics measurement system for motors. Getting the motor parameter by measuring propeller’s speed, lift and torque and sample formula.
   Finally, in order to prove the importance of the correct motor parameter. We enter the designed mission point, getting different result from propeller’s speed, analog attitude and position and different motor parameter. And take the simulation result in three-dimensional space to simulate the quadcopter’s flight path and flight attitude.
第三語言摘要
論文目次
Contents
Abstract in Chinese I
Abstract in English II
Contents III
List of Figures V
List of Tables VII
1 Introduction 1
1.1 Background 1
1.2 Literature Review 4
1.3 Problem Statement and Motivation 5
2 UAV modeling 10
2.1 UAV mathematical model 10
2.2 Motor rapid detection system 14
3 Simulation result 16
3.1 UAV parameter simulation 17
3.2 UAV position and attitude simulation 30
4 Conclusion 32
References 33

List of Figures
1.1 Fixed-wing aeroplane flight schematic 5
1.2 Signal-rotorcraft flight schematic 6
1.3 Multi-rotorcraft flight schematic 7
2.1 UAV system architecture 10
2.2 UAV coordinates and force analysis diagram 11
2.3 Motor measuring system 15
3.1 UAV simulation data 17
3.2 UAV simulation data(k-gain=0.75) 18
3.3 UAV simulation data(k-gain=1.25) 19
3.4 UAV simulation data(k-gain=0.5) 20
3.5 UAV simulation data(k-gain=1.5) 21
3.6 UAV simulation data(kf-gain=0.75) 22
3.7 UAV simulation data(kf-gain=1.25) 23
3.8 UAV simulation data(kf-gain=0.5) 24
3.9 UAV simulation data(kf-gain=1.5) 25
3.10 UAV simulation data(km-gain=0.75) 26
3.11 UAV simulation data(km-gain=1.25) 27
3.12 UAV simulation data(km-gain=0.5) 28
3.13 UAV simulation data(km-gain=1.5) 29
3.14 UAV position and attitude(in 6.5 second) 30
3.15 UAV position and attitude(in 10.5 second) 31
3.16 UAV position and attitude(in 14.5 second) 31

List of Tables
1.1 Taiwan’s population density in each administrative in 2014 9
3.1 UAV Flight Point Target 16
參考文獻
[1] S. F. Ahmed, K. Kushsairy, M. I. A. Bakar, D. Hazry and M. K. Joyo, ”Attitude
stabilization of Quad-rotor (UAV) system using Fuzzy PID controller (an experimental
test),” Computing Technology and Information Management (ICCTIM),
2015 Second International Conference on, Johor, 2015, pp. 99-104.
[2] J. P. Ortiz, L. I. Minchala and M. J. Reinoso, ”Nonlinear Robust H-Infinity
PID Controller for the Multivariable System Quadrotor,” in IEEE Latin America
Transactions, vol. 14, no. 3, pp. 1176-1183, March 2016.
[3] Yao-hong Qu, Quan Pan and Jian-guo Yan, ”Flight path planning of UAV based
on heuristically search and genetic algorithms,” 31st Annual Conference of IEEE
Industrial Electronics Society, 2005.
[4] C. Cui, N. Wang and J. Chen, ”Improved ant colony optimization algorithm for
UAV path planning,” Software Engineering and Service Science (ICSESS), 2014
5th IEEE International Conference on, Beijing, 2014, pp. 291-295.
[5] L. Yang, J. Qi, Z. Jiang, D. Song, J. Han and J. Xiao, ”Guiding attraction based
random tree path planning under uncertainty: Dedicate for UAV,” 2014 IEEE
International Conference on Mechatronics and Automation, Tianjin, 2014, pp.
1182-1187.
[6] H. Duan, Q. Luo, Y. Shi and G. Ma, ”?Hybrid Particle Swarm Optimization and
Genetic Algorithm for Multi-UAV Formation Reconfiguration,” in IEEE Computational
Intelligence Magazine, vol. 8, no. 3, pp. 16-27, Aug. 2013.
[7] J. Nielsen and R. Sharma, ”Formation control of quad-rotor UAVs using a single
camera,” Unmanned Aircraft Systems (ICUAS), 2015 International Conference
on, Denver, CO, 2015, pp. 18-25.
[8] V. Smiljiakovic, Z. T. Golubicic, P. S. Manojlovic, D. D. Obradovic, N. V. Popovic
and Z. B. Zivanovic, ”Application of integrated autonomous microwave position
finding system and GPS for UAV navigation,” Telecommunications in Modern
Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003. 6th International
Conference on, 2003, pp. 475-478 vol.2.
[9] L. E. Parker and B. A. Emmons, ”Cooperative multi-robot observation of multiple
moving targets,” Robotics and Automation, 1997. Proceedings., 1997 IEEE
International Conference on, Albuquerque, NM, 1997, pp. 2082-2089 vol.3.
[10] X. Deng and Q. Zeng, ”Research on laser-assisted odometry of indoor UAV with
monocular vision,” Cyber Technology in Automation, Control and Intelligent Systems
(CYBER), 2013 IEEE 3rd Annual International Conference on, Nanjing,
2013, pp. 165-169.
[11] P. Segui-Gasco, Y. Al-Rihani, H. S. Shin and A. Savvaris, ”A novel actuation
concept for a multi rotor UAV,” Unmanned Aircraft Systems (ICUAS), 2013 International
Conference on, Atlanta, GA, 2013, pp. 373-382.
[12] L. R. Ribeiro and N. M. F. Oliveira, ”UAV autopilot controllers test platform using
Matlab/Simulink and X-Plane,” 2010 IEEE Frontiers in Education Conference
(FIE), Washington, DC, 2010, pp. S2H-1-S2H-6.
[13] A. Bemporad and C. Rocchi, ”Decentralized linear time-varying model predictive
control of a formation of unmanned aerial vehicles,” 2011 50th IEEE Conference
on Decision and Control and European Control Conference, Orlando, FL, 2011,
pp. 7488-7493.
[14] Rongfeng Yang, ”Four-Rotorcfaft Attitude Control,” Department of Aerospace
Engineeting Thesis Kung University, 2010, 1-50.
[15] A. U. Awan, J. Park and H. J. Kim, ”Thrust estimation of quadrotor UAV using
adaptive observer,” Control, Automation and Systems (ICCAS), 2011 11th
International Conference on, Gyeonggi-do, 2011, pp. 131-136.
[16] O. Solomon, ”Model Reference Adaptive Control of a Permanent Magnet Brushless
DC Motor for UAV Electric Propulsion System,” Industrial Electronics Society,
2007. IECON 2007. 33rd Annual Conference of the IEEE, Taipei, 2007, pp. 1186-
1191.
[17] A. Marks, J. F. Whidborne and I. Yamamoto, ”Control allocation for fault tolerant
control of a VTOL octorotor,” Control (CONTROL), 2012 UKACC International
Conference on, Cardiff, 2012, pp. 357-362.
[18] R. Martinez-Alvarado, F. J. Ruiz-Sanchez, A. Sanchez-Orta and O. Garcia-
Salazar, ”Dynamic response of BLDC-thruster for small scale Quadrotors under
aerodynamic load torque,” Power, Electronics and Computing (ROPEC), 2014
IEEE International Autumn Meeting on, Ixtapa, 2014, pp. 1-6.
[19] J. H. Shi, Z. G. Yu, Q. M. Zou, J. X. Cai, Z. Q. Lin and Y. S. Lin, ”Unmanned
aerial vehicle research supply of relief map data used in anti - A Case Study
in Second Northern Freeway collapse,” Cadastral Survey: Republic of Cadastral
Survey Institute Proceedings, vol.29, no. 3, pp. 17-36, 2010.
[20] N. Michael, D. Mellinger, Q. Lindsey and V. Kumar, ”The GRASP Multiple
Micro-UAV Testbed,” in IEEE Robotics and Automation Magazine, vol. 17, no.
3, pp. 56-65, Sept. 2010.
[21] O. Solomon and P. Famouri, ”Dynamic Performance of a Permanent Magnet
Brushless DC Motor for UAV Electric Propulsion System - Part I,” IECON 2006
- 32nd Annual Conference on IEEE Industrial Electronics, Paris, 2006, pp. 1400-
1405.
[22] W. Khan and M. Nahon, ”Toward an Accurate Physics-Based UAV Thruster
Model,” in IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp. 1269-
1279, Aug. 2013.
[23] R. Martinez-Alvarado, E. E. Granda-Gutierrez, A. Sanchez-Orta and F. J. Ruiz-
Sanchez, ”Modeling and simulation of a propeller-engine system for Unmanned
Aerial Vehicles,” Power, Electronics and Computing (ROPEC), 2013 IEEE International
Autumn Meeting on, Mexico City, 2013, pp. 1-6.
[24] H. Alzu’bi, O. Akinsanya, N. Kaja, I. Mansour and O. Rawashdeh, ”Evaluation
of an aerial quadcopter power-plant for underwater operation,” Mechatronics and
its Applications (ISMA), 2015 10th International Symposium on, Sharjah, 2015,
pp. 1-4.
[25] T. Dierks and S. Jagannathan, ”Output Feedback Control of a Quadrotor UAV
Using Neural Networks,” in IEEE Transactions on Neural Networks, vol. 21, no.
1, pp. 50-66, Jan. 2010.
[26] S. Grzonka, G. Grisetti and W. Burgard, ”A Fully Autonomous Indoor Quadrotor,”
in IEEE Transactions on Robotics, vol. 28, no. 1, pp. 90-100, Feb. 2012.
[27] B. Herisse, T. Hamel, R. Mahony and F. X. Russotto, ”Landing a VTOL Unmanned
Aerial Vehicle on a Moving Platform Using Optical Flow,” in IEEE Transactions
on Robotics, vol. 28, no. 1, pp. 77-89, Feb. 2012.
[28] T. Tomic et al., ”Toward a Fully Autonomous UAV: Research Platform for Indoor
and Outdoor Urban Search and Rescue,” in IEEE Robotics and Automation
Magazine, vol. 19, no. 3, pp. 46-56, Sept. 2012.
[29] A. Franchi, C. Secchi, H. I. Son, H. H. Bulthoff and P. R. Giordano, ”Bilateral
Teleoperation of Groups of Mobile Robots With Time-Varying Topology,” in IEEE
Transactions on Robotics, vol. 28, no. 5, pp. 1019-1033, Oct. 2012.
[30] M. O Efe, ”Neural Network Assisted Computationally Simple PID Control of a
Quadrotor UAV,” in IEEE Transactions on Industrial Informatics, vol. 7, no. 2,
pp. 354-361, May 2011.
[31] J. Sztipanovits et al., ”Toward a Science of CyberVPhysical System Integration,”
in Proceedings of the IEEE, vol. 100, no. 1, pp. 29-44, Jan. 2012.
[32] V. Roberge, M. Tarbouchi and G. Labonte, ”Comparison of Parallel Genetic Algorithm
and Particle Swarm Optimization for Real-Time UAV Path Planning,”
in IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 132-141, Feb.
2013.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信