淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1807201612143700
中文論文名稱 電焊機之數位控制平台
英文論文名稱 Digital Control of Welding Machine
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生中文姓名 蔡怡然
研究生英文姓名 Yi-Ran Tsai
學號 603470195
學位類別 碩士
語文別 英文
口試日期 2016-07-07
論文頁數 28頁
口試委員 指導教授-劉寅春
委員-邱謙松
委員-李世安
中文關鍵字 電焊機  FPGA  數位化控制平台  直流對交流反流器 
英文關鍵字 H-bridge inverter  Welding machine  Digital control  FPGA 
學科別分類 學科別應用科學電機及電子
中文摘要 電焊技術的開始,擴張了人類對金屬的需求,同時也加快了工業發展的速度。終端用戶涉及各金屬加工業、船廠、油田、工廠、建築營造、航太科技、傳統電鍍等金屬溶接加工相關行業。目前電焊機功能上,除了對於焊接精度、高輸出功率、高可靠度需求日益增加外,針對不同應用場合之特殊輸出功能需求也大幅上揚,因此如何因應多元的客製化、輕量化與高可調精確度等顧客需求,是現今產品開發上需要考量之處。
  國內市面上的電焊機,大部分採用類比電路進行電力控制,使得儀器體積及重量相當龐大,且在電力輸出亦具有精確度較低的劣勢,反觀歐美大廠已開始進行全數位化的研發,實現於部分產品。全數位化之優勢除了體積與重量的優化,在運算能力、功能擴充性及輸出精確度都有大幅的提升;為達成此數位化之目標,需將類比控制電路完整移植至數位系統,輸出正確的訊號準位並克服延遲的問題。
  本研究透過FPGA開發板整合電焊機的三大主要功能,inverter控制、二氧化碳送氣及送線機馬達控制,根據焊接條件的不同(焊材、線徑、外觀需求)來調整電壓電流輸出、送線速率及送氣模式,並套用不同的控制理論,以應付更嚴苛的焊接條件。在實驗結果中,控制訊號能夠正確且安全地驅動inverter電路。
英文摘要 Welding technology boost the develop speed of industry. Customers involve various metal processing industry, shipyards, oil fields, factories, building construction, aerospace technology, traditional electroplating and metal welding related industries. Currently on the welding machine functions, in addition to the requirement of welding precision, high output power and high reliability increasing, the output function for the special needs of different applications also rose sharply. How to deal with multiple customized, lightweight, highly adjustable accuracy and other customer needs, is now the focus of product development.
With respect to the analog, the biggest advantage of digital systems is high precision. In analog system, through operational amplifier circuit because of the slight error cause by environment, using the digital system will be able to solve this issue.
In this thesis, the FPGA develop board can control the main functions of welding machine: inverter, gas and wire feeding safely.
論文目次 Abstract in Chinese ...............I
Abstract in English ...............II
Contents ..........................III
List of Figures ...................V
1 Introduction ....................1
1.1 Background ....................1
1.2 Literature Review .............6
1.3 Problem Statement .............7
2 Traditional welding machine .....8
2.1 Functions .....................8
2.2 Analog control circuit ........9
3 Digital welding machine .........11
3.1 H-bridge control ..............12
3.2 Solution for active Functions .14
3.2.1 Inert gas ...................14
3.2.2 Wire feeding ................14
4 Experiment result ...............16
4.1 Experiment Equipment...........16
4.2 Program map ...................19
4.3 Signal adaptation .............20
4.4 Experiment result .............22
5 Conclusion ......................24
References ........................25
List of Figures
1.1 shielded metal arc welding ..........2
1.2 Gas metal arc welding ...............3
1.3 Flux-cored arc welding ..............4
1.4 Submerged arc welding ...............5
2.1 H-bridge circuit ....................9
2.2 BEM-350 full circuit ................10
3.1 Digital system on welding machine ...11
3.2 H-bridge positive through ...........12
3.3 H-bridge Negative through ...........12
3.4 SPWM principle ......................13
3.5 SPWM principle ......................14
4.1 DE1-SoC FPGA board ..................16
4.2 IGBT driver board ...................17
4.3 Power supply ........................17
4.4 Hero Power BEM-350 welding machine ..18
4.5 Hero Power BEM-350 welding machine ..18
4.6 Program structure ...................19
4.7 RTL on FPGA .........................20
4.8 PWM signal before driver ............21
4.9 PWM signal after driver .............21
4.10 (a)PWM signal from driver (b)PWM signal on IGBT at error = 3 V ......22
4.11 (a)PWM signal from driver (b)PWM signal on IGBT at error = 7 V ......23
4.12 (a)PWM signal from driver (b)PWM signal on IGBT at error = 14 V .....23
參考文獻 [1] M. Kocur, S. Kozak and B. Dvorscak, ”Design and Implementation of FPGA -
digital based PID controller,” Control Conference (ICCC), 2014 15th International
Carpathian, Velke Karlovice, 2014, pp. 233-236.
[2] Y. F. Chan, M. Moallem and W. Wang, ”Design and Implementation of Modular
FPGA-Based PID Controllers,” in IEEE Transactions on Industrial Electronics,
vol. 54, no. 4, pp. 1898-1906, Aug. 2007.
[3] F. Taeed, Z. Salam and S. Ayob, ”FPGA Implementation of a Single-Input Fuzzy
Logic Controller for Boost Converter With the Absence of an External Analog-to-
Digital Converter,” in IEEE Transactions on Industrial Electronics, vol. 59, no. 2,
pp. 1208-1217, Feb. 2012.
[4] J. M. Blanes, R. Gutierrez, A. Garrigos, J. L. Lizan and J. M. Cuadrado, ”Electric
Vehicle Battery Life Extension Using Ultracapacitors and an FPGA Controlled
Interleaved BuckVBoost Converter,” in IEEE Transactions on Power Electronics,
vol. 28, no. 12, pp. 5940-5948, Dec. 2013.
[5] A. Thangavelu, M. V. Varghese. and M. V. Vaidyan, ”Novel FPGA based controller
design platform for DC-DC buck converter using HDL Co-simulator and Xilinx
System Generator,” Industrial Electronics and Applications (ISIEA), 2012 IEEE
Symposium on, Bandung, 2012, pp. 270-274.
[6] R. B. Caldo and R. Y. Yap, ”Design, development and implementation of a fuzzy
logic controller for DC-DC Buck and Boost converter in an FPGA,” Control, Au-tomation and Information Sciences (ICCAIS), 2013 International Conference on,
Nha Trang, 2013, pp. 73-78.
[7] M. Lakka, E. Koutroulis and A. Dollas, ”Development of an FPGA-Based SPWM
Generator for High Switching Frequency DC/AC Inverters,” in IEEE Transactions
on Power Electronics, vol. 29, no. 1, pp. 356-365, Jan. 2014.
[8] A. Navarro-Crespin, V. M. Lopez, R. Casanueva and F. J. Azcondo, ”Digital Control
for an Arc Welding Machine Based on Resonant Converters and Synchronous
Rectification,” in IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp.
839-847, May 2013.
[9] D. Sha and X. Liao, ”Digital control of switch-mode pulsed GMAWwelding power,”
2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp.
2746-2749.
[10] ”Digital Control of Switch-Mode Welding Machine using FPGA,” Power Electronics
Specialists Conference, 2006. PESC ’06. 37th IEEE, Jeju, 2006, pp. 1-5.
[11] Z. Zhao, J. S. Lai and Y. Cho, ”Dual-Mode Double-Carrier-Based Sinusoidal Pulse
Width Modulation Inverter With Adaptive Smooth Transition Control Between
Modes,” in IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 2094-
2103, May 2013.
[12] Deshang Sha and Xiaozhong Liao, ”Full digital control strategy for soft-switching
gas metal arc welding machine,” Electrical Machines and Systems, 2008. ICEMS
2008. International Conference on, Wuhan, 2008, pp. 1059-1062.
[13] S. Okanuma and Y. Ogata, ”A New Magnetic Oscillation-Type DC-AC Power
Converter Using Bridge-Connected Magnetic Circuit,” in IEEE Transactions on
Magnetics, vol. 46, no. 2, pp. 586-589, Feb. 2010.
[14] E. c. Chang, T. j. Liang, J. f. Chen and F. j. Chang, ”Real-time implementation
of grey fuzzy terminal sliding mode control for PWM DC-AC converters,” in IET
Power Electronics, vol. 1, no. 2, pp. 235-244, June 2008.
[15] R. Carballo, R. Nunez, V. H. Kurtz and F. Botteron, ”Design and Implementation
of a Three-Phase DC-AC Converter for Microgrids Based on Renewable Energy
Sources,” in IEEE Latin America Transactions, vol. 11, no. 1, pp. 112-118, Feb.
2013.
[16] Ying-Yu Tzou and Shih-Liang Jung, ”Full control of a PWM DC-AC converter
for AC voltage regulation,” in IEEE Transactions on Aerospace and Electronic
Systems, vol. 34, no. 4, pp. 1218-1226, Oct 1998.
[17] Y. H. Chang, ”Design and Analysis of Multistage Multiphase Switched-Capacitor
Boost DCVAC Inverter,” in IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 58, no. 1, pp. 205-218, Jan. 2011.
[18] L. Michel, X. Boucher, A. Cheriti, P. Sicard and F. Sirois, ”FPGA Implementation
of an Optimal IGBT Gate Driver Based on Posicast Control,” in IEEE Transactions
on Power Electronics, vol. 28, no. 5, pp. 2569-2575, May 2013.
[19] J. C. A. Floriani, ”Generalized analysis of current ripple in a pulsewidth modulation
H-bridge converter with unipolar-bipolar switching,” in IEEE Power Electronics
Letters, vol. 2, no. 3, pp. 83-86, Sept. 2004.
[20] H. I. Sewell, D. A. Stone and C. M. Bingham, ”A describing function for resonantly
commutated H-bridge inverters,” in IEEE Transactions on Power Electronics, vol.
19, no. 4, pp. 1010-1021, July 2004.
[21] K. Sugahara, S. Oida and T. Yokoyama, ”High performance FPGA controller for
digital control of power electronics applications,” Power Electronics and Motion
Control Conference, 2009. IPEMC ’09. IEEE 6th International, Wuhan, 2009, pp.
1425-1429.
[22] S. Kojima, T. Ishioka and T. Yokoyama, ”A study of communication system for
power electronics controller using FPGA based hardware controller,” Power Electronics
Conference (IPEC), 2010 International, Sapporo, 2010, pp. 1262-1267.
[23] V. Mummadi, ”Design of Robust Digital PID Controller for H-Bridge Soft-
Switching Boost Converter,” in IEEE Transactions on Industrial Electronics, vol.
58, no. 7, pp. 2883-2897, July 2011.
[24] Q. Qiu, W. Yu and X. Li, ”Wire Feeding System with H-Bridge of Submerged
Arc Welding Based on ”Damping Loop”,” 2012 Asia-Pacific Power and Energy
Engineering Conference, Shanghai, 2012, pp. 1-4.
[25] C. Klumpner and M. Corbridge, ”A two-stage power converter for welding applications
with increased efficiency and reduced filtering,” 2008 IEEE International
Symposium on Industrial Electronics, Cambridge, 2008, pp. 251-256.
[26] R. K. Pongiannan, S. Paramasivam and N. Yadaiah, ”Dynamically Reconfigurable
PWM Controller for Three-Phase Voltage-Source Inverters,” in IEEE Transactions
on Power Electronics, vol. 26, no. 6, pp. 1790-1799, June 2011.
[27] M. Kumar and R. Gupta, ”Sampling Effect Characterization of Digital SPWM of
VSI in Time Domain,” in IEEE Transactions on Industrial Electronics, vol. 63, no.
7, pp. 4150-4159, July 2016.
[28] A. Chitra and S. Himavathi, ”Reduced switch multilevel inverter for performance
enhancement of induction motor drive with intelligent rotor resistance estimator,”
in IET Power Electronics, vol. 8, no. 12, pp. 2444-2453, 12 2015.
[29] W. R. Liou, H. M. Villaruza, M. L. Yeh and P. Roblin, ”A Digitally Controlled
Low-EMI SPWM Generation Method for Inverter Applications,” in IEEE Transactions
on Industrial Informatics, vol. 10, no. 1, pp. 73-83, Feb. 2014.
[30] R. Ghosh and G. Narayanan, ”Control of Three-Phase, Four-Wire PWM Rectifier,”
in IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 96-106, Jan.
2008.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信