§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201610523700
DOI 10.6846/TKU.2016.00490
論文名稱(中文) 黏彈性對塑膠射出光學鏡片之光學品質的影響
論文名稱(英文) The Influence of Polymer Viscoelasticity on the Optical Features for the Injected Optical Lens
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 賴德隆
研究生(英文) De-Lung Lai
學號 603400549
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-06-28
論文頁數 125頁
口試委員 指導教授 - 林國賡(gglin@mail.tku.edu.tw)
委員 - 孫士博(tobersun@moldex3d.com)
委員 - 黃招財(cthuang@moldex3d.com)
關鍵字(中) 流變學
雙折射
White-Metzner Model
Phan-Thien Tanner
Giesekus
關鍵字(英) Rheology
optical birefringence
White-Metzner
Phan-Thien Tanner
Giesekus
第三語言關鍵字
學科別分類
中文摘要
射出成型精密光學鏡片之幾何精度是一重要的品質需求,然而即使幾何尺寸符合標準,也有可能其光學性質評估仍不合格,這是因為成型產品有雙折射的存在;若雙折射過大則會造成光學系統之光程差,不易透過組合透鏡等方法做像差矯正。所以,為使塑膠射出光學鏡片良率提高,對於成型過程所可能產生之雙折射研究就顯得非常重要。本研究運用流變學實驗,結合流變學理論,取得光學材料之流變參數與彈性參數,並運用Moldex3D模流軟體,對光學凸透鏡進行模流分析,並將目標鎖定於雙折射之分析探討。本研究分別採用三個流變模式(White-Metzner、Phan-Thien Tanner、Giesekus Models),針對COP(Zeonex 480R)與PMMA(Kurary GH-1000S)兩種光學材料,以Moldex3D軟體作模流分析。從模擬計算之雙折射與光彈條紋的分布來看,是以流動所造成之殘留應力為主要影響因素,而且在澆口附近的雙折射最為嚴重。再與實射成品之光彈條紋實驗值比較,發現以PTT模式所得模擬結果最為接近。
本研究另針對PMMA材料,進行蠕變/回復實驗,輔以Burger模式之參數迴歸分析,探討材料之彈性效應。在PMMA這支材料上,可以發現當溫度升高時,材料彈性效應會越衰減;此外,當蠕變時間越長時,材料之彈性效應會減弱。
英文摘要
For the injected optical lens, the geometric precision is really an important quality requirement. But, even standard geometry, the optical properties are probably assessed to be unsatisfactory, because of the existence of the part birefringence. Severe birefringence in the optical part could cause the optical path difference in the optical system, which is not easy to be overcome through the optical aberration correction or other methods. Therefore, in order to improve the yield of the injected optical lenses, the investigation of the induced birefringence generated during the molding process is very important. In this study, the rheological measurements along with the theoretical models were firstly used to obtain the material parameters, and then the commercial Moldex3D software was applied to numerically simulate the injection molding process of the concave lens, focusing on the analysis of the birefringence inside the molded part. Three kinds of rheological models ( White-Metzner, Phan-Thien Tanner and Giesekus Models) and one kind of creep equation ( Burger Model ) were employed in the software with the COP (Zeonex 480R) and PMMA(Kurary GH-1000S) material. The creep/recovery experiment were conducted to discuss the factors which impact the elastic effect. It resulted that elastic effects of PMMA would be more obvious with the rise of the temperature; however, increasing the creep time would weak the elastic effect. From the simulated birefringence and the photoelastic fringes, it was found that the flow-induced, rather than the thermal-induced, residual stress is the major factor to bring about the birefringence, and it was the most serious near the gate. It was also found that the simulated photoelastic fringes by using the PTT model can show the most agreements with the experimental results among the three models in this study.
第三語言摘要
論文目次
本文目錄	                                            I
表目錄	                                                   IV
圖目錄	                                                    V
符號說明	                                           IX
第一章	緒論	                                            1
1.1 前言	                                            1
1.2 文獻回顧	                                            3
1.3 研究動機與目的	                                    6
第二章	理論介紹                                            8
2.1 射出成型製程	                                    8
2.2 流變學理論	                                            9
2.2.1 蠕變實驗	                                           10
2.2.2 WLF方程式	                                           11
2.2.3 Cross 模式	                                   12
2.2.4 Cox-Merz & Laun's 關係式	                           13
2.2.5 Maxwell(Multi-Mode)模式	                           15
2.3 流變學模式	                                           15
2.3.1 White-Metzner流變模式	                           16
2.3.2 Phan-Thien-Tanner流變模式	                           17
2.3.3 Giesekus流變模式	                                   19
2.4 CAE應用於射出成型光學鏡片	                           20
2.4.1 殘留應力	                                           21
2.4.2 光學性質分析	                                   22
第三章	研究方法	                                   24
3.1 實驗材料	                                           24
3.1.1 PMMA(聚甲基丙烯酸甲酯)	                           24
3.1.2 COP(環烯烴聚合物)	                                   24
3.2 實驗流程	                                           26
3.3 實驗設備與操作條件	                                   27
3.3.1 振幅掃描	                                           28
3.3.2 頻率掃描	                                           29
3.3.3 穩態剪切黏度	                                   30
3.3.4 N1正向應力差	                                   30
3.3.5 蠕變實驗	                                           31
3.4 CAE射出成型模流分析介紹與設定	                   31
3.5 流變儀實驗-穩態溫度掃描	                           35
3.5.1 流變儀實驗-穩態黏度測試	                           37
3.5.2 流變儀實驗-動態頻率測試	                           39
3.5.3 流變儀實驗-N1測試	                                   42
3.5.4 蠕變回復(Creep/Recovery)實驗	                   43
3.6 動態力學分析(DMA)實驗-溫度掃描測試	                   45
3.6.1 動態力學分析(DMA)實驗-頻率掃描測試	           48
第四章	結果與討論	                                   49
4.1 蠕變/回復 實驗	                                   49
4.1.1 蠕變/回復(Burger Model)驗證	                   54
4.2 Cross模式黏度參數擬合	                           57
4.3 Modified White-Metzner流變模式參數擬合	           62
4.4 WLF方程式參數整合	                                   67
4.4.1 WLF方程式參數驗證	                                   70
4.5 Maxwell (Multi-Mode) 參數擬合	                   72
4.6 Phan-Thien-Tanner流變模式	                           76
4.7 Giesekus流變模式參數應用	                           80
4.8 黏彈模型比較	                                   82
4.9 材料參數改變的影響	                                   84
4.9.1 黏度改變	                                           84
4.9.2 黏彈參數改變	                                   86
第五章	結論	                                           88
第六章	未來研究方向	                                   90
第七章	參考文獻	                                   91
附錄(A) PTT.Giesekus 參數求解	                          101
附錄(B) W-M流變模式推導	                                  106
附錄(C) PTT流變模式推導	                                  111
附錄(D) Giesekus流變模式推導	                          117
附錄(E) Burger Model推導	                          120
附錄(E) Moldex3D 內建材料特性	                          123

表目錄
表 3.1.1實驗材料性質表	                                   25
表 3.4.1模型網格資訊	                                   33
表 3.4.2成型條件表	                                   34
表 4.1.1 PMMA在不同溫度之黏彈係數表	                   53
表 4.1.2 PMMA在不同條件下之回復比(%)	                   57
表 4.2.1 Cross模式參數整理	                           62
表 4.3.1黏彈性模式之參數	                           67
表 4.4.1 WLF方程式參數整理	                           70
表 4.5.1 Maxwell (Multi-Mode)模式參數表	                   73
表 4.7.1 PTT、Giesekus (Multi-Mode) 流變模式參數表	   82
 
圖目錄
圖 1.1.1 CAE應用於射出成型示意圖	                    2
圖 2.2.1 Burger 模式之應變與時間關係示意圖	           11
圖 3.1.1 PMMA結構式	                                   24
圖 3.1.2 COP結構式	                                   25
圖 3.2.1研究流程圖	                                   26
圖 3.3.1平板夾具旋轉流變儀示意圖	                   27
圖 3.3.2不同流變儀黏度量測範圍	                           28
圖 3.4.1光學鏡片示意圖	                                   32
圖 3.4.2 Moldex3D分析模型圖	                           32
圖 3.4.3 Moldex3D模型網格圖	                           33
圖 3.5.1 PMMA(Kurary GH-1000S)穩態剪切黏度溫度掃描	   35
圖 3.5.2 COP(Zeonex480R)穩態剪切黏度溫度掃描	           36
圖 3.5.3 COC(Topas 5013L-10)穩態剪切黏度溫度掃描	   36
圖 3.5.4 PMMA(Kurary GH-1000S)穩態剪切黏度(無加熱罩)	   37
圖 3.5.5 PMMA(Kurary GH-1000S)穩態剪切黏度(有加熱罩)	   38
圖 3.5.6 COP(Zeonex480R)穩態剪切黏度(無加熱罩)	   38
圖 3.5.7 COP穩態剪切黏度(有加熱罩)	                   39
圖 3.5.8 PMMA(Kurary GH-1000S)動態頻率測試	           40
圖 3.5.9 PMMA(Kurary GH-1000S)動態頻率測試	           40
圖 3.5.10 COP(Zeonex480R)動態頻率測試(230~260℃)	   41
圖 3.5.11 COP(Zeonex480R)動態頻率測試(270~290℃)	   41
圖 3.5.12 COP(Zeonex480R)之N1測試	                   42
圖 3.5.13 PMMA(KuraryGH-1000S)之240℃之應變與時間之關係圖	                                                   43
圖 3.5.14 PMMA(KuraryGH-1000S)之250℃之應變與時間之關係圖	                                                   44
圖 3.5.15 PMMA(KuraryGH-1000S)之260℃之應變與時間之關係圖	                                                   44
圖 3.6.1 DMA夾具示意圖	                                   45
圖 3.6.2 PMMA(Kurary GH-1000S)之DMA溫度掃描	           46
圖 3.6.3 COC(Topas 5013L-10)之DMA溫度掃描	           46
圖 3.6.4 PMMA與COC儲存模數比較圖	                   47
圖 3.6.5 PMMA與COC損失模數比較圖	                   47
圖 3.6.6 COC(Topas 5013L-10)之DMA頻率掃描	           48
圖 4.1.1 Burger模式之應變與時間關係擬合圖	           50
圖 4.1.2 PMMA(Kurary GH-1000S)蠕變階段擬合結果	           51
圖 4.1.3 PMMA(Kurary GH-1000S)240℃回復階段擬合結果	   51
圖 4.1.4 PMMA(Kurary GH-1000S)250℃回復階段擬合結果	   52
圖 4.1.5 PMMA(Kurary GH-1000S)260℃回復階段擬合結果	   52
圖 4.1.6 PMMA(Kurary GH-1000S)在240℃改變蠕變時間之擬合結果(應力:50Pa)	                                           55
圖 4.1.7 PMMA(Kurary GH-1000S)在250℃改變蠕變時間之擬合結果(應力:50Pa)	                                           55
圖 4.1.8 PMMA(Kurary GH-1000S)在260℃改變蠕變時間之擬合結果(應力:50Pa)	                                           56
圖 4.2.1 COP(Zeonerx480R)黏度與Cross模式回歸數值比較	   59
圖 4.2.2 PMMA(Kurary GH-1000S)黏度與Cross模式回歸數值比較	                                                   59
圖 4.2.3 COP(Zeonerx480R)實驗值與回歸數值WLF比較	   60
圖 4.2.4 PMMA(Kurary GH-1000S)實驗值與回歸數值WLF比較	   60
圖 4.2.5 改變材料之黏度n值	                           61
圖 4.2.6改變材料之黏度Taus*值	                           61
圖 4.3.1 Cox-Merz 黏度關係式驗證	                   64
圖 4.3.2 Laun's經驗式N1對剪切率關係圖	                   64
圖 4.3.3 COP(Zeonex480R)應力緩和時間對剪切率圖	           65
圖 4.3.4 PMMA(Kurary GH-1000S)應力緩和時間對剪切率圖	   65
圖 4.3.5 改變W-M模式之m值	                           66
圖 4.3.6 改變W-M模式之k值	                           66
圖 4.4.1 PMMA(Kurary GH-1000S)利用DMA損失模數做線性回歸圖	                                                   69
圖 4.4.2 COC(Topas 5013L-10)利用DMA損失模數做線性回歸圖	   69
圖 4.4.3 PMMA(Kurary GH-1000S)在流變儀得到之參數比較	   71
圖 4.4.4 COP(Zeonex480R)在流變儀得到之參數比較	           71
圖 4.4.5 PMMA(Kurary GH-1000S)中aT對溫度做圖	           72
圖 4.5.1 COP利用Maxwell方程式回歸參數與實驗值儲存模數圖	   74
圖 4.5.2 COP利用Maxwell方程式回歸參數與實驗值損失模數圖	   74
圖 4.5.3 PMMA利用Maxwell方程式回歸參數與實驗值儲存模數圖	                                                   75
圖 4.5.4 PMMA利用Maxwell方程式回歸參數與實驗值損失模數圖	                                                   75
圖 4.6.1 Shear viscosity master curve (Tr:260℃) and PTT fitting (e:0.1) for COP(Zeonex480R)	                   77
圖 4.6.2 Shear viscosity master curve (Tr:240℃) and PTT fitting (e:0.8) for PMMA(Kurary GH-1000S)	           77
圖 4.6.3 COP(Zeonex480R) e、x回歸參數與實驗值相比較	   79
圖 4.6.4 PMMA(Kurary GH-1000S) e、x回歸參數與實驗值相比較	                                                   79
圖 4.7.1 COP(Zeonex480R) Giesekus回歸參數與實驗值相比較	   81
圖 4.7.2 PMMA(Kurary GH-1000S) Giesekus回歸參數與實驗值相比較	                                                   81
圖 4.8.1四種黏彈模式和實驗值的光彈條紋比較圖	           83
圖 4.9.1改變材料黏度之n變化	                           85
圖 4.9.2澆口附近區域放大圖	                           85
圖 4.9.3 Taus*變化總合光彈條紋圖	                   85
圖 4.9.4改變材料黏彈性m之變化圖	                           87
圖 4.9.5改變材料黏彈性k之變化圖	                           87
參考文獻
1.	Han, C. D., Rheological behavior of Polymer Blends, J. Appl. Polym. Sci, 29, 2205, 1984.
2.	Dealy, J. M., Wissbrun, K. F., Melt Rheology and its Role in Plastics Processing: Theory and Application, Champman & Hall, 1995.
3.	G.-G. Lin*, Y.-F. Jang Jian, C.-T. Huang, Melt Creep Recovery of Polyamide 6 and Polypropylene Nanocomposites Blended with Layered Silicate, Polymer Processing XXXI1(2016)
4.	Luduena, L., Vazquez, A., Alvarez, V., Viscoelastic behavior of polycaprolactone/clay nanocomposites, Journal of Composite Materials 46 (6), pp. 677-689(2012)
5.	Hidalgo-Salazar, M.A., Mina, J.H., Herrera-Franco, P.J., The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials, Document Composites Part B: Engineering 55, pp. 345-351(2013)
6.	Lorenzo, G., Checmarev, G., Zaritzky, N., Califano, A., Linear viscoelastic assessment of cold gel-like emulsions stabilized with bovine gelatin, LWT - Food Science and Technology44 (2), pp. 457-464(2011)
7.	G. Muller, Geophys. J. R. Astr. Soc. 87, 1113 (1986)
8.	G. Muller, Erratum, Geophys. J. R. Astr. Soc. 91, 1135 (1987)
9.	Mainardi, F., Spada, G., Creep, relaxation and viscosity properties for basic fractional models in rheology, European Physical Journal: Special Topics 193 (1), pp. 133-160(2011)
10.	Dao-Long Chen , Ping-Feng Yang, Yi-Shao Lai, A review of three-dimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation, Microelectronics Reliability 52 (2012) 541–558(2012)
11.	Alper Kiziltas, Behzad Nazari, Esra Erbas Kiziltas, Douglas J. S. Gardner, Yousoo Han,Todd S. Rushing, Cellulose NANOFIBER-polyethylene nanocomposites modified by polyvinyl alcohol, J. APPL. POLYM. SCI.(2016)
12.	K. Ben Azouz , K. Bekkour , D. Dupuis, Influence of the temperature on the rheological properties of bentonite suspensions in aqueous polymer solutions, Applied Clay Science 123 (2016) 92–98(2016)
13.	Zhenhua Tian , Lian Duan, Lei Wu, Lirui Shen, Guoying Li, Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models, Materials Science and Engineering C 63 (2016) 10–17
14.	Alexander A Makhaniok, Evguenia V Korobko and Mikalai A Zhurauski, Rheological models of mechanical behavior of electrorheological fluids under different electric field strength, Journal of Intelligent Material Systems and Structures(2015)
15.	Shai Rahimi, Arie Peretz, On Shear Rheology of Gel Propellants, Propellants, Explosives, Pyrotechnics 32, No. 2 (2007)
16.	Filip Van Bockstaele , Ingrid De Leyn , Mia Eeckhout , Koen Dewettinck, Non-linear creep-recovery measurements as a tool for evaluating the viscoelastic properties of wheat flour dough, Journal of Food Engineering 107 (2011) 50–59
17.	Lee, Y. B., Kwon, T. H, Modeling and Numerical Simulation of Residual Stresses and Birefringence in Injection Molded Center-gated Disks, Journal of Materials Processing Technology, Vol. 111, pp.214-218. (2001)
18.	Lee, Y. B., Kwon, T. H. and Yoon, K, Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: Basic modeling and results for injection molding. Journal of Polymer Engineering & Science,42,2246-2272(2002)
19.	Lee, Y. B., Kwon, T. H. and Yoon, K, Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part II: Effects of processing conditions. Journal of Polymer Engineering & Science,42,2246-2272(2002)
20.	Pantani, R, Validation of a Mode to Predict Birefringence In Injection Molding, European Polymer Journal, Vol. 41, pp.1484-1492.(2005)
21.	Wang, P. J. and Lai, H. E., Study of Optical Characteristics for Injection Molded Aspheric Lenses, Asia Pacific Conference on Optics Manufacture, (2007).
22.	Wang, P. J. and Lai, H. E., Study of Residual Birefringence in Injection Molded Lenses, Plastics Encounter at SPE ANTEC, 2494-2498 (2007).
23.	Pei Jen Wang ,Huai En Lai,“Study of residual birefringence in injection molded lenses”, ANTEC 2007/2494
24.	T. C. Jan and K. T. O’rien, A User-Friendly Interactive Expert System for the Injection Moulding of Engineering Thermoplastics, International Journal of Advanced Manufacturing Technology, Vol. 8, No. 1, pp.42-51.(1993)
25.	張榮語著,射出成型模具設計,高立圖書有限公司,(2001)
26.	Christopher S.Brazel, Stephen L.Rosen, Fundamental principles of Polymeric Materials, Book of A John Wiley & Sons, INC., Publication Third Edition. 
27.	A. K. Doolittle, Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space , Journal of Applied Physics, 22, 1471 (1951).
28.	J. D. Ferry, Viscoelastic Properties of Polymers , Wiley, New York(1961).
29.	M. L. Williams, R. F. Landel, J. D. Ferry ,The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, J. Amer. Chem. Soc, 77, 3701, 1955.
30.	R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, vol 2, Wiley, 1987.
31.	M. M. Cross, Relation between viscoelasticity and shear-thinning behaviour in liquids, Rheologica Acta, 18, 909 (1979).
32.	W. P. Cox, E. H. Merz, Correlation of dynamic and steady flow viscosities, J. Polym. Sci, 28, 619(1958)
33.	H.M. Laun, Prediction of elastic strains of polymer melts in shear and elongation, J Rheol, 30, 459,(1986)
34.	R. Pantani, V. Speranza, A. Sorrentino, G. Titomanlio, Molecular orientation and strain in injection moulding of thermoplastics, Macromol. Symp, 185, 293(2002)
35.	S M F D S M. T N P et.al A dynamic nonlinear regression method for the determination of the discrete relaxation spectrum. J. Phys. D: Appl. Phys. 33 (2000) 1–11. Printed in the UK
36.	R. Byron Bird, Robert C. Armstrong, Ole Hassager, dynamic of polymeric liquids , John-Wiley & Sons Inc, New York, USA (1987).P.273
37.	R.G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworths, 1988.
38.	G. W. Peters, J. F. Schoonen, F. P. Baaijens, H. E. Meijer, On the performance of enhanced constitutive models for polymer melts in a cross-slot flow, J. Non-Newt. Fluid. Mech, 82, 387 1999.
39.	T. Hagen, M. Renardy, Boundary layer analysis of the Phan-Thien-Tanner and Giesekus model in high Weissenberg number flow, J. Non-Newt. Fluid. Mech, 73, 181, 1997.
40.	A. Souvaliotis, A. N. Beris, An extended White–Metzner viscoelastic fluid model based on an internal structural parameter, J. Rheo, 36, 241, 1992.
41.	W. Minoshima, J.L. White, J.E. Spruiell, Experimental investigations of the influence of molecular weight distribution on melt spinning and extrudate swell characteristics of polypropylene, J. Appl. Polym. Sci, 25, 287, 1980.
42.	W. Minoshima, J. L. White, Significance of Deformation Rate Softening of Memory in Viscoelastic Fluid Mechanics and Polymer Processing, Polym. Eng. Sci, 21, 1113, 1981.
43.	G. G. Lin, J. T. Chang, T. W. Kuo, Experimentation and modeling for the apparent elongation viscosity of polymer melts with the White–Metzner model, Polym. Adv. Technol, 25, 1565, 2014.
44.	J. L. White and A. Metzner, Rheological equations from molecular network theories, J. Appl. Polym. Sci, 7, 1867.(1963)
45.	W.Minoshima, J. L. White, A comparative experimental study of the isothermal shear and uniaxial elongational rheological properties of low density, high density and linear low density polyethylenes, J. Non-Newt. Fluid Mech, 19, 251, (1986)
46.	H.A. Barnes, G.P. Roberts, A simple empirical model describing the steady-state shear and extensional viscosities of polymer melts, J. Non-Newtonian Fluid Mech. 44 (1992) 113
47.	N. Phan-Thien, R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newt. Fluid. Mech, 2, 353, 1977.
48.	G.Hatzikiriakos,G. Heffner, D. Vlassopoulos, K. Christodoulou, Rheological characterization of polyethylene terephthalate resins using a multimode Phan-Tien-Tanner constitutive relation. Rheol. Acta, 36, 568, 1997.
49.	Baaijens, F.P.T., Selen, S.H.A., Baaijens, H.P.W., Peters, G.W.M., Meijer, H.E.H., Viscoelastic flow past a confined cylinder of a low density polyethylene melt, Journal of Non-Newtonian Fluid Mechanics.pp. 173-203(1997)
50.	R.I. Tanner, S. Nasseri, Simple constitutive models for linear and branched poly-mers, J. Non-Newtonian Fluid Mech. 116 (2003) 1–17.
51.	H. Giesekus, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration dependent molecular mobility, Rheol. Acta, 21, 366, (1982)
52.	H. Giesekus, A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility, J. Non-Newt. Fluid. Mech, 11, 69, (1982)
53.	張元榕、邱顯森、楊文賢、張榮語,應用黏彈性分析於預測射出產品之流動殘留應力,台灣區電腦輔助成型技術交流協會CAE Molding Conference,科盛科技股份有限公司、國立清華大學化學工程學系,(2008)
54.	M. R. Kamal, R. A. Lai-Fook, J. R. Hernandez-Aguilar, Residual thermal stresses in injection moldings of thermoplastics: A theoretical and experimental study, Polym. Eng. Sci, 42, 1098, (2002)
55.	E. Riande and E. Saiz, Dipole Moments and Birefringence of Polymers, Prentice-Hall, Inc., New Jersey. (1992)
56.	H. E. Lai, P. J. Wang, Study of process parameters on optical qualities for injection-molded plastic lenses, Appl. Opt, 47, 12, 2008 .
57.	R. Y. Chang, W. H. Yang, Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach, Int. J. Numer. Methods Fluids, 37, 125, 2001.
58.	Moldex3D/Solid真實三維模流分析理論與應用,科盛科技股份有限公司,2009。
59.	C.W.Makosko, Rheology principles, measurements, and applications, Wiley/vch, 1994.
60.	R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, 1999.
61.	N. Phan-Thien, Understanding Viscoelasticity, Springer Science, 2002.
62.	K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam,K. H. Ahn, S. J. Lee, R. H. Ewoldt, G. H. McKinley,A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci, 36, 1697, 2011.
63.	J. F. Vega, S. Rastogi, G. W. Peters, H. E. Meijer, Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt, J. Rheol, 48, 663, 2004.
64.	J. F. Vega, D. P. Cerón, S. G. Ruíz, S. Prashar, M. Fajardo, J. M. Salazar, Viscoelasticity and macromolecular topology in single-site catalyzed polyethylene, J Mater Sci, 43, 1745, 2008.
65.	J.Z. Liang, W. Peng, Melt viscosity of PP and FEP/PP blends at low shear rates, Polym. Test, 28, 386, 2009. 
66.	A.Y. Malkin, Non-Newtonian viscosity in steady-state shear flows, J. Non-Newt. Fluid. Mech,192, 48, 2013.
67.	J. Aho, S. Syrjälä, Shear viscosity measurements of polymer melts using injection molding machine with adjustable slit die, Polym. Test, 30, 595, 2011.
68.	E.A. Jensen , J. deC. Christiansen, Measurements of first and second normal stress differences in a polymer melt, J. Non-Newt. Fluid. Mech, 148, 41, 2008.
69.	Donald G. Baird, First normal stress difference measurements for polymer melts at high shear rates in a slit-die using hole and exit pressure data, J. Non-Newtonian Fluid Mech, 148 (2008) 13–23).
70.	Pattamaprom, C., and R. G. Larson, Constraint release effects in monodisperse and bidisperse polystyrenes in fast transient shearing flows, Macromolecules 34, 5229–5237(2001)
71.	E.T.Kopesky, T.S.Haddad, R.E.Cohen, andG.H.McKinley: Thermomechanical properties of poly(methyl methacrylate) containing tethered anduntethered polyhedral oligomeric silses-quioxanes. Macromolecules 37 (24), 8992 (2004).
72.	Kraus, H.-G. Kilian, M. Saile: "Relaxation mode coupling and universality in stress-strain cycles of networks including the glass transition range", Polymer 35,2349-2354 (1994)
73.	J. Zhang, C. H. Wang, Holographic grating relaxation measurements of dye diffusion in linear poly(methyl methacrylate) and crosslinked poly(methyl methacrylate) hosts, Macromolecules 20 (9), pp 2296–2300(1987)
74.	Q M P Nguyen, X Chen, Y C Lam,C Y Yue, Effects of polymer melt compressibility on mold filling in micro-injection molding, J. Micromech. Microeng. 21 (2011)
75.	Y. Onishi, Y. Hirai, H. Takagi, M. Takahashi, and T. Tanabe: "Numerical and Experimental Analysis of Intermittent Line-and-space Patterns in Thermal Nanoimprint", Jpn. J. Appl. Phys., 47,5145-5150(2008)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信