§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201314471300
DOI 10.6846/TKU.2013.00676
論文名稱(中文) 使用T-S CMAC 之質子交換膜燃料電池最大功率追蹤控制
論文名稱(英文) Maximum Power Point Tracking for the Proton Exchange Membrane Fuel Cell via T-S CMAC Control
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 林舁曜
研究生(英文) Yu-Yao Lin
學號 600460264
學位類別 碩士
語言別 英文
第二語言別
口試日期 2013-06-27
論文頁數 55頁
口試委員 指導教授 - 劉寅春
委員 - 江東昇
委員 - 邱謙松
關鍵字(中) 質子交換膜燃料電池
最大功率追蹤
T-S模糊
線性矩陣不等式
小腦模型控制器
關鍵字(英) PEM fuel cell
Maximum power point tracking
T-S fuzzy
Linear matrix inequalities
CMAC
第三語言關鍵字
學科別分類
中文摘要
本論文提出一種使用T-S模糊小腦模型控制器實現PEM燃料電池最大功率追蹤控制。T-S模糊小腦模型(T-S CMAC)的設計來自於PDC控制增益和權重值組合成一個個別的單一向量擴充與T-S模糊理論和CMAC理論相似。此控制器有以下優點:
一、使用LMI求解出控制增益,故可以提升CMAC初始權重的準確性。 
二、 LMI引用自適應能力的CMAC設計,允許有時變參數在系統中。 
三、可以快速並且反覆的學習修正控制量。
    由結果可得知T-S模糊小腦模型(T-S CMAC)可以有效的達成最大功率追蹤之目的,提升燃料電池之效能,減少能源的損耗。
英文摘要
This paper presents a T-S CMAC controller implement PEM fuel cell maximum power tracking control. T-S CMAC is designed from the PDC control gain and weight values combined into a single vector of individual expansion with T-S fuzzy theory
and CMAC theory of similarity. The controller has the following advantages i.) Using LMI solved control gain and it can improve the accuracy of the CMAC initial weight.
ii.) LMI quote adaptive ability design the CMAC that allows time-varying parameters in the system. iii.) Can quickly and repeatedly learning correction amount of control. From the results T-S CMAC can effectively accomplish the purpose of the maximum power point tracking. Improve the effectiveness of fuel cells and can reduce energy consumption.
第三語言摘要
論文目次
Contents
Abstract in Chinese I
Abstract in English II
Contents III
List of Figures VI
List of Tables VIII
1 Introduction 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Fuzzy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Cerebellar model articulation controller . . . . . . . . . . . . . . 4
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Problem Formulation and Motivations . . . . . . . . . . . . . . . . . . 6
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 PEM fuel cell system characteristics 8
2.1 Type of the fuel cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Alkaline Fuel Cell (AFC) . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Proton Exchange Membrane Fuel Cell (PEMFC) . . . . . . . . 9
2.1.3 Direct Methanol Fuel Cell (DMFC) . . . . . . . . . . . . . . . . 9
2.1.4 Phosphoric Acid Fuel Cell (PAFC) . . . . . . . . . . . . . . . . 10
2.1.5 Molten Carbonate Fuel Cell (MCFC) . . . . . . . . . . . . . . . 10
2.1.6 Solid Oxide Fuel Cell (SOFC) . . . . . . . . . . . . . . . . . . . 11
2.2 PEM fuel cell framework and principle . . . . . . . . . . . . . . . . . . 13
2.2.1 Polymer electrolyte membrane (PEM) . . . . . . . . . . . . . . 14
2.2.2 Anode catalyst layer (hydrogen side) . . . . . . . . . . . . . . . 14
2.2.3 Cathode catalyst layer (oxygen side) . . . . . . . . . . . . . . . 15
2.2.4 Bipolar flow field plates . . . . . . . . . . . . . . . . . . . . . . 15
2.3 PEM fuel cell polarization curve . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Maximum Power Point Tracking . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Voltage feedback method . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Power Feedback method . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Actual Measurement method . . . . . . . . . . . . . . . . . . . 19
2.4.4 Linear Approximation method . . . . . . . . . . . . . . . . . . . 20
2.4.5 Perturb and Observation method . . . . . . . . . . . . . . . . . 20
2.4.6 Incremental Conductance method . . . . . . . . . . . . . . . . . 20
3 PEM Fuel Cell Power Control System 24
3.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Boost Converter Dynamic Model . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 DC-DC Boost Converter Structure . . . . . . . . . . . . . . . . 25
3.2.2 Averaging Method of One Time Scale Discontinuous System . . 27
3.2.3 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Algorithm for the Incremental Resistance Method . . . . . . . . . . . . 31
4 Takagi-Sugeno Fuzzy Cerebellar Model Articulation Controller 35
4.1 Nominal Tracking Controller . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Overall Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Cerebellar Model Articulation Controller with T-S Fuzzy Model . . . . 41
5 Numerical Simulations 46
5.1 Parameters of System Modeling . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Conclusions 51
References 52

List of Figures
1.1 Energy conversion efficiency of the fuel cell and the thermal power. . . 2
2.1 PEM fuel cell chemical reaction process. . . . . . . . . . . . . . . . . . 14
2.2 Proton exchange membrane fuel cell structure. . . . . . . . . . . . . . 14
2.3 Proton exchange membrane fuel cell structure. . . . . . . . . . . . . . 17
2.4 The equivalent circuit of a PEMFC . . . . . . . . . . . . . . . . . . . . 18
2.5 Perturb and Observation method. . . . . . . . . . . . . . . . . . . . . 22
2.6 Incremental Conductance method. . . . . . . . . . . . . . . . . . . . . 23
3.1 PEMFC power generation control system block diagram. . . . . . . . . 25
3.2 Structure of DC-DC Boost Converter . . . . . . . . . . . . . . . . . . 26
3.3 (a)continuous conduct mode (b)discontinuous conduct mode . . . . . . 26
3.4 MOSFET turn-on condition . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 MOSFET turn-off condition . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 PEM fuel cell P-I characteristic curve maximum power point tracking
schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Incremental resistance method maximum power current search flowchart. 33
3.8 Fixed pressure at 0.5(atm) and temperature changes in P-I characteristic
curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Fixed pressure at 0.5(atm) and temperature changes in V-I characteristic
curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 CMAC basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 CMAC separate each input to each memory region . . . . . . . . . . . 42
4.3 CMAC structure with T-S fuzzy model . . . . . . . . . . . . . . . . . . 43
5.1 Reference current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 DC-DC boost converter inductor current . . . . . . . . . . . . . . . . . 48
5.3 Current error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 PEM fuel cell output voltage . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 PEM fuel cell output power . . . . . . . . . . . . . . . . . . . . . . . . 50

List of Tables
2.1 Comparison of various fuel cell . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Parameter of PEM Fuel Cell System . . . . . . . . . . . . . . . . . . . 46
5.2 Parameter of DC-DC Boost Converter . . . . . . . . . . . . . . . . . . 47
參考文獻
[1] L. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.
[2] R. Isermann, “On fuzzy logic applications for automatic control, supervision, and
fault diagnosis,” Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 28, no. 2, pp. 221–235, 1998.
[3] F. S. Lin, “Integral fuzzy control and application on power converter,” Master’s
thesis, CYCU, 2003.
[4] T. Takagi and M. Sugeno, “Fuzzy identification of system and its applications to
modelling and control,” IEEE Trans. Syst., Man, and Cyber, vol. 15, pp. 116–132,
1985.
[5] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,”
Fuzzy sets and systems, vol. 45, no. 2, pp. 135–156, 1992.
[6] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
in system and control theory. Society for Industrial Mathematics, 1994, vol. 15.
[7] M. Dargahi, M. Rezanejad, J. Rouhi, and M. Shakeri, “Maximum power point
tracking for fuel cell in fuel cell/battery hybrid systems,” in Multitopic Conference,
2008. INMIC 2008. IEEE International. IEEE, 2008, pp. 33–37.
[8] V. Di Dio, D. La Cascia, R. Liga, and R. Miceli, “Integrated mathematical model
of proton exchange membrane fuel cell stack (pemfc) with automotive synchronous
electrical power drive,” in Electrical Machines, 2008. ICEM 2008. 18th Interna-
tional Conference on, sept. 2008, pp. 1 –6.
[9] J. Jia, Y. Wang, Q. Li, Y. Cham, and M. Han, “Modeling and dynamic characteristic
simulation of a proton exchange membrane fuel cell,” Energy Conversion,
IEEE Transactions on, vol. 24, no. 1, pp. 283–291, 2009.
[10] P. Buasri and Z. Salameh, “An electrical circuit model for a proton exchange
membrane fuel cell (pemfc),” in Power Engineering Society General Meeting, 2006.
IEEE. IEEE, 2006, pp. 6–pp.
[11] C. Wang, M. H. Nehrir, and S. R. Shaw, “Dynamic models and model validation
for pem fuel cells using electrical circuits,” Energy Conversion, IEEE Transactions
on, vol. 20, no. 2, pp. 442–451, 2005.
[12] A. Tariq and J. Asghar, “Development of microcontroller-based maximum power
point tracker for a photovoltaic panel,” in Power India Conference, 2006 IEEE.
IEEE, 2006, pp. 5–pp.
[13] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb
and observe maximum power point tracking method,” Power Electronics, IEEE
Transactions on, vol. 20, no. 4, pp. 963–973, 2005.
[14] S. K. Kollimalla and M. K. Mishra, “Adaptive perturb & observe mppt algorithm
for photovoltaic system,” in Power and Energy Conference at Illinois (PECI), 2013
IEEE. IEEE, 2013, pp. 42–47.
[15] Z. dan Zhong, H. bo Huo, X. jian Zhu, G. yi Cao, and Y. Ren, “Adaptive
maximum power point tracking control of fuel cell power plants,” Journal of
Power Sources, vol. 176, no. 1, pp. 259 – 269, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378775307024172
[16] T.-Y. Kim, H.-G. Ahn, S. K. Park, and Y.-K. Lee, “A novel maximum power point
tracking control for photovoltaic power system under rapidly changing solar radiation,”
in Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International
Symposium on, vol. 2. IEEE, 2001, pp. 1011–1014.
[17] H. Kumar and R. Tripathi, “Simulation of variable incremental conductance
method with direct control method using boost converter,” in Engineering and
Systems (SCES), 2012 Students Conference on. IEEE, 2012, pp. 1–5.
[18] Y. Yusof, S. H. Sayuti, M. Abdul Latif, and M. Z. C. Wanik, “Modeling and
simulation of maximum power point tracker for photovoltaic system,” in Power
and Energy Conference, 2004. PECon 2004. Proceedings. National. IEEE, 2004,
pp. 88–93.
[19] N. A. Ahmed and A. Al-Othman, “Photovoltaic system with voltage-based maximum
power point tracking using support vector machine,” in Industrial Electronics
and Applications (ICIEA), 2010 the 5th IEEE Conference on. IEEE, 2010, pp.
2264–2269.
[20] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a
microcontroller-based, photovoltaic maximum power point tracking control system,”
Power Electronics, IEEE Transactions on, vol. 16, no. 1, pp. 46–54, 2001.
[21] R. Gules, J. De Pellegrin Pacheco, H. L. Hey, and J. Imhoff, “A maximum power
point tracking system with parallel connection for pv stand-alone applications,”
Industrial Electronics, IEEE Transactions on, vol. 55, no. 7, pp. 2674–2683, 2008.
[22] D. Shmilovitz, “Photovoltaic maximum power point tracking employing load parameters,”
in Industrial Electronics, 2005. ISIE 2005. Proceedings of the IEEE
International Symposium on, vol. 3. IEEE, 2005, pp. 1037–1042.
[23] Z. Yan, L. Fei, Y. Jinjun, and D. Shanxu, “Study on realizing mppt by improved
incremental conductance method with variable step-size,” in Industrial Electronics
and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on. IEEE, 2008, pp.
547–550.
[24] C.-S. Lin and C.-T. Chiang, “Learning convergence of cmac technique,” Neural
Networks, IEEE Transactions on, vol. 8, no. 6, pp. 1281–1292, 1997.
[25] Y. Kim and F. Lewis, “Optimal design of cmac neural-network controller for robot
manipulators,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 30, no. 1, pp. 22–31, 2000.
[26] T. Yamamoto, R. Kurozumi, and S. Fujisawa, “A design of cmac based intelligent
pid controllers,” in Arti cial Neural Networks and Neural Information Process-
ingXICANN/ICONIP 2003. Springer, 2003, pp. 471–478.
[27] M. A. H. H. M. J. B. A. P. Ronald F. Mann, John C. Amphlett and P. R. Roberge,
“Development and application of a generalised steady-state electrochemical model
for a pem fuel cell,” Journal of Power Sources, vol. 86(2000), pp. 173–190, 1999.
[28] J. Sun and H. Grotstollen, “Averaged modelling of switching power converters:
Reformulation and theoretical basis,” in Power Electronics Specialists Conference,
1992. PESC'92 Record., 23rd Annual IEEE. IEEE, 1992, pp. 1165–1172.
[29] R.-J. Wai and L.-C. Shih, “Design of voltage tracking control for dc–dc boost converter
via total sliding-mode technique,” Industrial Electronics, IEEE Transactions
on, vol. 58, no. 6, pp. 2502–2511, 2011.
[30] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of
nonlinear systems: stability and design issues,” Fuzzy Systems, IEEE Transactions
on, vol. 4, no. 1, pp. 14–23, 1996.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信