§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201314261300
DOI 10.6846/TKU.2013.00675
論文名稱(中文) 含氮橋基雙雜菲衍生物 : 合成及金屬感測器性質研究
論文名稱(英文) Studies of bis(1,10-Phenanthrolin-2-yl)amine derivatives: Synthesis and Metal Ion Sensing
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 蔡孟宏
研究生(英文) Meng-Hung Tsai
學號 699160676
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-07-11
論文頁數 118頁
口試委員 指導教授 - 王文竹
共同指導教授 - 林志彪
共同指導教授 - 賴重光
關鍵字(中) 雙核錯合物
電荷轉移躍遷
關鍵字(英) Oxo bridge dinucear complex
Oxo to metal CT state
第三語言關鍵字
學科別分類
中文摘要
一系列1,10-二氮雜菲(1,10-phenanthroline)架構的衍生物被合成,得到三個新的配位子NpDPA、EtDPA、及AlDPA,分別以L1、L2、及L3代號稱之。L1是在bis(1,10-Phenanthrolin-2-yl)amine的架橋氮原子上,接上一個光學活性的亞甲基萘分子團,並將其運用在化學螢光感測器上,是研究的重點。
 
  NpDPA的酸鹼性質是以滴定的電子吸收光譜變化,計算得到H2NpDPA2+的pKa1 = 2.93及HNpDPA+的pKa2 = 4.79。L1與硝酸鐵反應,得到含Fe-O-Fe的雙核鐵錯合物 [(Fe(NpDPA)(H2O))2O](NO3)4 (2),且經x-ray繞射取得單晶結構,分子間的堆疊為π-π作用力。在光譜研究,電子吸收光譜顯示錯合物2,因錯合物為Fe-O-Fe結構,在光譜中有兩個特別的吸收峰範圍為320-325 nm與 360-380 nm,此吸收峰為O → Fe電荷轉移躍遷。發射光譜中,錯合物2 在547 nm有放射峰,此放射峰來自於O → Fe電荷轉移躍遷的放光行為。而錯合物3 ( 3 = [Cr2O(NpDPA)2(H2O)2](Cl)4 )與錯合物2光譜一致,具有特異的發光性質。NpDPA與金屬配位後產生光誘導電子轉移效應(Photoinduced Electron Transfer , PET),使配位子螢光淬滅(quenching),主要是亞甲基萘為一個推電子基,增強橋基氮孤對電子的分子內電荷轉移。

  金屬錯合物的發射光譜顯示三種金屬為Cr(III)、Fe(III)、Au(III)有相同的放光行為,經加入KI後,將突顯Cr(III)放光行為且化學螢光感測對Cr(III)具有專一性。這些錯合物的特異性,將在本論文仔細探討及研究。
英文摘要
A series of new bis(1,10-Phenanthrolin-2-yl)amine (HDPA) derivatives have been synthesized (L1 = NpDPA、L2 = EtDPA、L3 = AlDPA). The L1 incorporate a naphthalenylmethylene group on the bridge nitrogen atom of HDPA as a new fluorophore. This study focused on the specific luminescence properties of L1. The UV-Vis spectra of L1 as a function of pH gave acidity constants of H2NpDPA2+ (pKa1 = 2.93) and HNpDPA+ (pKa2 = 4.79). Coordination of L1 with iron(III) nitrate yielded the corresponding [Fe2O(NpDPA)2(H2O)2](NO3)4 complex 2. The x-ray crystallography revealed the oxo-bridged dinuclear structure of complex 2. The Fe-O-Fe bridges have been reported to exhibit electronic transition at 320-325 nm and 360-380 nm which was assigned to charge transfer absorption. The fluorescence at lower energy wavelength 547 nm (ex = 370nm) was observed. This emission was attributed to an Oxo→Fe(III) charge transfer states. The Cr(III) ion exhibited similar spectroscopic properties as the Fe(III) complex 2. The photophysical studies concluded that the luminescence quenching in the L1 is due to the photo-induced electron transfer (PET) from the naphthalenylmethylene group, which is an electron releasing group that increased the internal charge transfer (ICT) resulting from the bridged nitrogen atom to phenanthroline. The specific fluorescence of L1 at 547 nm when associated with Cr(III) and Fe(III) ions shows selective metal ion sensing ability. The emission was sensitive with Cr(III) with no or weak interference by other cations.
第三語言摘要
論文目次
第一章	緒論  
1-1 前言....................................................1
1-2 感應器與化學感應........................................1
1-3 化學感應器的種類........................................2
1-4 螢光化學感測器的基本架構................................3
1-5 螢光化學感測器的設計原理................................5
1-5.1分子內電荷轉移 (Internal Charge Transfer , ICT)........5
1-5.2 溶劑效應 (Solvent Effect).............................5
1-5.3 陽離子效應 (Cation Effect)............................6
1-6   光誘導電子轉移 (Photoinduced Electron Transfer , PET).7
1-7   研究動機與設計........................................9

第二章	實驗 
2-1 實驗藥品...............................................13
2-2 物理方法...............................................15
2-3 配位子的合成...........................................18
2-4 錯合物的合成...........................................26

第三章	合成與結構
3-1 配位子的合成...........................................29
3-2 錯合物的合成...........................................32
3-3 配位子的晶體...........................................34
3-4 錯合物的晶體...........................................42

第四章	配位子與錯合物的化學性質
4-1 核磁共振光譜...........................................58
4-2 質譜...................................................63
4-3 電子吸收光譜...........................................68
4-4 發射光譜...............................................73
4-5 酸鹼滴定...............................................82
4-6 理論計算...............................................90

第五章	Cr(III)離子感測
5-1 金屬錯合物的電子吸收光譜...............................92
5-2 Cr(III)離子滴定的電子吸收光譜&生成常數的測量...........95
5-3 金屬錯合物的發射光譜..................................100
5-4 Cr(III),Fe(III),Au(III)和KI在L1溶液中的發射光譜.......104
5-5 Cr(III)離子滴定的發射光譜.............................106
5-6 競爭與選擇............................................109
5-7 可逆性的發射光譜......................................111

第六章	結論..............................................113

參考文獻..................................................114

附錄......................................................117

圖目錄
Figure 1-2.1 The basic architecture of chemical sensors…………………………..…..2
Figure 1-3.1 The composition of sensors…………………………………………….. .3
Figure 1-4.1 The basic architecture of fluorescent chemosensors……………………..5
Figure 1-5.1 The energy diagram of solvent effect upon charge transfer in ICT………6
Figure 1-5.2 The energy diagram of ionic effect upon charge transfer in ICT. The
terms and symbols are defined as follows:F:fluorophore, R: receptor;
FC represents a Franck-Condon excited state;“equil.” and “thexi.”
represent a thermally equilibrated electronic ground and excited state....7
Figure 1-6.1 Frontier orbital energy diagram for PET……………………………..…..8
Figure 1-7.1 The molecular structure of di(2-ethylsulfanylethyl)amine and
rhodamine………………….…………………………………………….9
Figure 1-7.2 The molecular structure of Macrocyclic ligands………………………..10
Figure 1-7.3 The molecular structure of Polyaza acyclic ligands…………………….10
Figure 1-7.5 The molecular structure of μ-oxo-bridged binuclear complex………….11
Figure 1-7.4 The molecular structure of HDPA and NpDPA (L1)……………………12
Figure 3-3.1 ORTEP diagram of NpDPA (L1). Thermal ellipsoids drawn at the 50 %
probability level………………………………………………………..34
Figure 3-3.2 Crystal packing diagram of NpDPA(L1), hydrogen atoms are omitted for
clarity………………………..…………………………………………36
Figure 3-3.3 Crystal packing diagram of NpDPA(L1) in parallel and perpendicular
view…………………………………………………………………….36
Figure 3-3.4 ORTEP diagram of EtDPA(L2). Thermal ellipsoids drawn at the 50 %
probability level………………………………………………………..37
Figure 3-3.5 Crystal packing diagram of EtDPA(L2), hydrogen atoms are omitted for
clarity…………………………………………………………………..38
Figure 3-3.6 Crystal packing diagram of EDPA(L2) in parallel and perpendicular
View……………………………………………………………………39
Figure 3-4.1 ORTEP plot of [Ni(NpDPA)(OAc)2] (1), hydrogen atoms and solvent are
omitted for clarity ; Thermal ellipsoids drawn at the 50 % probability
level…………………………………………………………………….43
Figure 3-4.2 Coordination sphere of complex 1, ellipsoids drawn at the 50%
probability
level…………………………………………………………………….43
Figure 3-4.3 Crystal packing diagram of [Ni(NpDPA)(OAc)2] (1)…………………..45
Figure 3-4.4 Crystal packing diagram of [Ni(NpDPA)(OAc)2] (1) in parallel and
perpendicular view……………………………………………………..45
Figure 3-4.5 ORTEP plot of [Fe2O(NpDPA)2(H2O)2](NO3)4 (2), Thermal ellipsoids
drawn at the 50 % probability level……………………………………47
Figure 3-4.6 ORTEP plot of [Fe2O(NpDPA)2(H2O)2](NO3)4 (2), hydrogen atoms and
solvent are omitted for clarity ; Thermal ellipsoids drawn at the 50 %
probability level………………………………………………………..47
Figure 3-4.7 Coordination sphere of complex 2, ellipsoids drawn at the 50%
probability level………………………………………………………..48
Figure 3-4.8 Crystal packing diagram of [Fe2O(NpDPA)2(H2O)2](NO3)4 (2)………..49
Figure 3-4.9 Crystal packing diagram of [Fe2O(NpDPA)2(H2O)2](NO3)4 (2) in parallel
and perpendicular view………………………………………………...50
Figure 3-4.10 ORTEP plot of [Ni(AlDPA)(OAc)2](5), hydrogen atoms and solvent are
omitted for clarity ; Thermal ellipsoids drawn at the 50 % probability
level…………………………………………………………………….52
Figure 3-4.11 Coordination sphere of complex 5, ellipsoids drawn at the 50%
probability level………………………………………………………52
Figure 3-4.12 Crystal packing diagram of [Ni(AlDPA)(OAc)2] (5), hydrogen atoms are
omitted for clarity……………………………………………………..54
Figure 3-4.13 Crystal packing diagram of [Ni(AlDPA)(OAc)2] (5) in parallel and
perpendicular view……………………………………………………54
Figure 4-1.1 1H-NMR spectrum of NpDPA (L1) in DMSO-d6 at 300K……………...60
Figure 4-1.2 1H-NMR spectrum of NpDPA (L1) in DMSO-d6 at 300K, from 9.5 ppm
to 6.0 ppm………………………………………………………………60
Figure 4-1.3 1H-NMR spectrum of EtDPA (L2) in DMSO-d6 at 300K………………61
Figure 4-1.4 1H-NMR spectrum of EtDPA (L2) in DMSO-d6 at 300K, from 9.2 ppm
to 7.5ppm……………………….………………………………………61
Figure 4-1.5 1H-NMR spectrum of AlDPA (L3) in DMSO-d6 at 300K………………62
Figure 4-1.6 1H-NMR spectrum of AlDPA (L3) in DMSO-d6 at 300K, from 9.5 ppm
to 5.0 ppm……………………………………………………………...62
Figure 4-2.1 MALDI-TOF spectrum of NpDPA (L1) in CH3OH solution…………...63
Figure 4-2.2 ESI-MS spectrum of EtDPA (L2) in CH3OH solution………………….64
Figure 4-2.3 ESI-MS spectrum of AlDPA (L3) in CH3OH solution………………….65
Figure 4-2.4 MALDI-TOF spectrum of [Fe2O(NpDPA)2(H2O)2](NO3)4 (2) in
CH3OH solution…………………………………………………………66
Figure 4-2.5 MALDI-TOF spectrum of [Cr2O(NpDPA)2(H2O)2](Cl)4 (3) in 50%
CH3CN/CH3OH solution………………………………………………...67
Figure 4-3.1 The UV-Vis spectra of 10-5 M 1,10-phen, HDPA, NpDPA (L1), EtDPA
(L2), AlDPA (L3) in CH3CN………………………………….………...71
Figure 4-3.2 The UV-Vis spectra of 10-5 M [Ni(NpDPA)(OAc)2] (1),
[Fe2O(NpDPA)2(H2O)2](NO3)4 (2), [Cr2O(NpDPA)2(H2O)2](Cl)4 ) (3) in
CH3CN ………………………………………………………………….71
Figure 4-3.3 Schematic energy level diagram and illustrations of orbitals proposed to
be involved in oxo → Fe CT transitions for oxo-bridged diiron(III)
complexes………………………………………………………………72
Figure 4-4.1 Excitation (red) and emission (black、green、blue) spectra of 2.0 × 10-5M
NpDPA (L1) in CH3CN …………………………….………………....76
Figure 4-4.2 Excitation (red) and emission (black、green、blue) spectra of 7.5 × 10-5M
EtDPA (L2) in CH3CN………………….……………………………..76
Figure 4-4.3 Excitation (red) and emission (black、green、blue) spectra of 7.3 × 10-5M
AlDPA (L3) in CH3CN………………………………………………….77
Figure 4-4.4 UV-Vis absorption (black) and Emission (red、blue) spectra of 2.0 × 10-5
M [Ni(NpDPA)(OAc)2] (1) in CH3CN…………………………………77
Figure 4-4.5 UV-Vis absorption (black) and Emission (red、blue) spectra of 2.0 × 10-5
M [Fe2O(NpDPA)2(H2O)2](NO3)4 (2) in CH3CN………………………78
Figure 4-4.6 UV-Vis absorption(black) and Emission (red、blue) spectra of 2.0 × 10-5
M [Cr2O(NpDPA)2(H2O)2](Cl)4 ) (3) in CH3CN……………………….78
Figure 4-4.7 The fluorescence spectra (λex = 370 nm) of (2.0 × 10−5 M)
Ni(NpDPA)(OAc)2] (1), [Fe2O(NpDPA)2(H2O)2](NO3)4 (2),
[Cr2O(NpDPA)2(H2O)2](Cl)4 ) (3) in CH3CN………………………….79
Figure 4-4.8 The fluorescence spectra (λex = 410 nm) of (2.0 × 10−5 M)
[Ni(NpDPA)(OAc)2] (1), [Fe2O(NpDPA)2(H2O)2](NO3)4 (2),
[Cr2O(NpDPA)2(H2O)2](Cl)4 ) (3) in CH3CN………………………….79
Figure 4-4.9 UV-Vis absorption (black) and Excitation (red、blue) spectra of 2.0 × 10-5
M [Fe2O(NpDPA)2(H2O)2](NO3)4 (2) in CH3CN………………………81
Figure 4-4.10 UV-Vis absorption (black) and Excitation (red、blue) spectra of 2.0 ×
10-5 M [Cr2O(NpDPA)2(H2O)2](Cl)4 ) (3) in CH3CN………………….81
Figure 4-5.1 The UV-Vis spectra of 10-5 M NpDPA (L1) as a function of pH between
2.00 and 7.46…………………………………………………………..84
Figure 4-5.2 The UV-Vis spectra of 10-5 M NpDPA (L1) as a function of pH between
7.46 and 4.03…………………………………………………………..84
Figure 4-5.3 The UV-Vis spectra of 10-5 M NpDPA (L1) as a function of pH between
3.69 and 2.00…………………………………………………………...85
Figure 4-5.4 The UV-Vis spectra of NpDPA (L1) (pH = 7.46), HNpDPA+(pH = 4.73),
H2NpDPA2+(pH = 2.00)………………………………………………..85
Figure 4-5.5 Variation of absorbance as a function of pH for 10-5 M NpDPA (L1) for a
selection of wavelengths. Protonation constants of pKa1 = 2.94 and pKa2
= 4.71 , while points are the experimental points……………………….86
Figure 4-5.6 Plot of log[(Ai – A / A - Af)] vs. pH(320nm);change pH in the UV-vis
spectrum of NpDPA (L1) (pH 3.65~7.46)……………………………..86
Figure 4-5.7 Plot of log[(Ai – A / A - Af)] vs. pH(320nm);change pH in the UV-Vis
spectrum of NpDPA (L1) (pH 2.46~3.50)……………………………..87
Figure 4-5.8 The Emission spectra of 10-5 M NpDPA (L1) as a function of pH between
11.7and 2.06……………………………………………………………89
Figure 4-5.9 Emission intensity (λem = 426nm) and absorbance of NpDPA (L1) (λabs =
310 nm) over the pH range 2.06 − 11.7 , the solid lines represent the
non-linear least-squares fits to the experimental data………………… 89
Figure 4-6.1 HOMO, LUMO and LUMO+1 orbitals of NpDPA as calculated by DFT
method in the solid phase (right) and HOMO and LUMO energy levels
calculated by the DFT method (left). The molecular geometries have
been optimized by TDDFT methods…………………………………...91
Figure 5-1.1 The UV-Vis spectra of NpDPA (L1) in the presence of various metal ions.
[L1] = 2.0 × 10-5 M in CH3CN solution. [Mn+] = 2.0 × 10-5 M in CH3OH
solution…………………………………………………………………..93
Figure 5-1.2 The UV-Vis spectra of NpDPA (L1) in the presence of various metal ions.
[L1] = 2.0 × 10-5 M in CH3CN solution. [Mn+] = 2.0 × 10-5 M in CH3OH
solution…………………………………………………………………..93
Figure 5-1.3 The UV-Vis spectra of NpDPA (L1) in the presence of Cr3+ and Fe3+ ions.
[L1] = 2.0 × 10-5 M in CH3CN solution. [Cr3+] , [Au3+] and [Fe3+] = 2.0 ×
10-5 M in CH3OH solution………………………………………………94
Figure 5-2.1 The UV-Vis spectra of 2.0 x 10-5 M NDPA (L1) CH3CN solution
observed upon addition of Cr(ClO4)3‧6H2O in CH3OH solution…….97
Figure 5-2.2 The UV-Vis spectra of 2.0 x 10-5 M NDPA (L1) CH3CN solution
observed upon addition of Cr(ClO4)3‧6H2O in CH3OH solution,
varied equivalent of Cr(ClO4)3‧6H2O from 0 to 0.5………………….97
Figure 5-2.3 The UV-Vis spectra of 2.0 x 10-5 M NDPA (L1) CH3CN solution
observed upon addition of Cr(ClO4)3‧6H2O in CH3OH solution,
varied equivalent of Cr(ClO4)3‧6H2O from 1.0 to 2.0……………….98
Figure 5-2.4 Variation of observed absorption……………………………………….98
Figure 5-2.5 (a) Experiment (b) Calculation UV-Vis spectra of 2.0 × 10-5 M NpDPA
(L1) with addition of 0.0 - 2.0 equiv. Cr(ClO4)3‧6H2O in CH3CN
solution…………………………………………………………………..99
Figure 5-2.6 (a) Species distribution for complexation of Cr3+ with L by specfit……99
Figure 5-3.1 The fluorescence spectra (λex = 370 nm) of NpDPA (L1) (2.0 × 10−5 M) in
the presence of different metal ions (1equiv.) ( K+, Na+, Ca2+, Mg2+ ,Mn2+
Fe2+, Co2+ , Ni2+ , Cu2+ , Zn2+ ,Cd2+ ,Hg2+ , Co3+, Fe3+, Au3+, Cr3+, NpDPA )
in CH3OH / CH3CN (1:100, v/v: 10 mL ). excitation and emission slit
widths were 5 nm……………………………………………………..102
Figure 5-3.2 The fluorescence spectra (λex = 410 nm) of NpDPA (L1) (2.0 × 10−5 M) in
the presence of different metal ions (1equiv.)( K+, Na+, Ca2+, Mg2+ ,Mn2+
Fe2+, Co2+ , Ni2+ , Cu2+ , Zn2+ ,Cd2+ ,Hg2+ , Co3+, Fe3+, Au3+, Cr3+, NpDPA )
in CH3OH / CH3CN (1:100, v/v: 10 mL ). excitation and emission slit
widths were 5 nm……………………..………………………………102
Figure 5-3.3 The fluorescence spectra (λex = 370 nm) of NpDPA (L1) (2.0 × 10−5 M) in
the presence of different metal ions (1 equiv.) (Cr3+,Au3+) in CH3OH /
CH3CN (1:100, v/v: 10 mL )………………………………………….103
Figure 5-3.4 The fluorescence spectra (λex = 410 nm) of NpDPA (L1) (2.0 × 10−5 M) in
the presence of different metal ions (1 equiv.) (Cr3+,Au3+) in CH3OH /
CH3CN (1:100, v/v: 10 mL )………………………………….………103
Figure 5-4.1 The fluorescence spectra (λex = 410 nm) of NpDPA (L1) (2.0 × 10−5 M) in
the presence of different metal ions (2 equiv) (Cr3+,Au3+, Fe3+) and KI (3
equiv) in CH3OH / CH3CN (1:100, v/v: 10 mL )……………..………105
Figure 5-5.1 Fluorescence emission spectra (λex = 410 nm) of NpDPA (L1) ( 2.0 x 10-5
M) in CH3CN upon the addition of Cr3+( 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.1, 1.2, 1.4, 1.6, 1.8, 2, 3 equiv ). The excitation and
emission slit widths were 5 nm……………………………………….107
Figure 5-5.2 Fluorescence emission spectra (λex = 410 nm) of NpDPA (L1) ( 2.0 x 10-5
M) in CH3CN upon the addition of Cr3+ ( 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.1, 1.2, 1.6, 1.8, 2, 3 equiv ). The excitation and emission slit
widths were 5 nm………………………………………………………108
Figure 5-5.3 Rationmetric calibration curve I547nm as a function of [Cr3+] / [L1]…...108
Figure 5-6.1 The fluorescence spectra (λex = 410 nm) of NpDPA (L1) (2.0 × 10−5 M) in
the presence of different metal ions (1equiv.)(K+, Na+, Ca2+, Mg2+ ,Mn2+
Fe2+, Co2+ , Ni2+ , Cu2+ , Zn2+ ,Cd2+ ,Hg2+ , Co3+, Fe3+, Au3+, Cr3+) in
CH3OH / CH3CN (1:100, v/v: 10 mL ). The subsequent addition of 1
equiv of Cr3+ to the solution…………………………………………..110
Figure 5-6.2 Fluorescence responses of NpDPA (L1) (2.0 x 10-5 M) to various
metalions in CH3OH / CH3CN (1:100, v/v: 10 mL ). The bars represent
the fluorescence intensity at 547 nm. Black bars represent the addition
of 1 equiv of different metal ions to NpDPA. Red bars represent the
subsequent addition of 1 equiv of Cr3+ to the solution………………..110
Figure 5-7.1 Effects of Cr3+, and EDTA treatment on the fluorescence spectra of L1.
Slash denotes the sequence of addition. [L1] = 2.0 x 10-5 M, in CH3CN.
[Cr3+](1st) = 2.5 × 10-4 M, in CH3OH. [EDTA] = 5.0 × 10-4 M, [Cr3+](2nd) =
1.0 x 10-3 M……………………………………………………………..112

表目錄
Table 3-3.1 Crystal data and structure refinement for L1…………………………….40
Table 3-3.6 Crystal data and structure refinement for L2…………………………….41
Table 3-4.1 Crystal data and structure refinement for 1………………………………55
Table 3-4.6 Crystal data and structure refinement for 2. squeezed one H2O…………56
Table 3-4.11 Crystal data and structure refinement for 5……………………………..57
Table 3.3.2 Atomic coordinates ( x 104) and equivalent isotropic displacement
parameters (A 2 x 103) for L1. U(eq) is defined as one third of the trace
of the orthogonalized Uij tensor………………………………………..119
Table 3.3.3 Bond lengths [A ] and angles [°] for L1…………………………………121
Table 3.3.4 Anisotropic displacement parameters (A 2 x 103) for L1. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ...
+ 2 h k a* b* U12 ]…………………………………………………….124
Table 3.3.5 Hydrogen coordinates ( x 104) and isotropic displacement parameters
(A 2 x 103) for L1………………………………………….…………...126
Table 3.3.7 Atomic coordinates ( x 104) and equivalent isotropic displacement
parameters (A 2 x 103) for a L2. U(eq) is defined as one third of the trace
of the orthogonalized Uij tensor………………………………..………127
Table 3.3.8 Bond lengths [A ] and angles [°] for L2…………………………………128
Table 3.3.9 Anisotropic displacement parameters (A 2x 103) for L2. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ...
+ 2 h k a* b* U12 ]…………………………………………………….131
Table 3.3.10 Hydrogen coordinates ( x 104) and isotropic displacement parameters
(A 2 x 103) for L2……………………………………………………..132
Table 3-4.3 Bond lengths [A ] and angles [°] for 1…………………………………..133
Table 3-4.2 Atomic coordinates ( x 104) and equivalent isotropic displacement
parameters (A 2x 103) for 1. U(eq) is defined as one third of the trace of
the orthogonalized Uij tensor…………………………………………..136
Table 3-4.3 Bond lengths [A ] and angles [°] for 1…………………………………..143
Table 3-4.4 Anisotropic displacement parameters (A 2 x 103) for 1. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ...
+ 2 h k a* b* 12 ]…………………………………………………...….146
Table 3-4.5 Hydrogen coordinates ( x 104) and isotropic displacement parameters
(A 2 x 103) for 1………………………………………………………..148
Table 3-4.7 Atomic coordinates ( x 104) and equivalent isotropic displacement
parameters (A 2x 103) for 2. U(eq) is defined as one third of the trace of
the orthogonalized Uij tensor……………….……………………….…150
Table 3-4.8 Bond lengths [A ] and angles [°] for 2…….…………………………….154
Table 3-4.9 Anisotropic displacement parameters (A 2 x 103) for 2. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ...
+ 2 h k a* b* 12 ]………………………………………………………156
Table 3-4.10 Hydrogen coordinates ( x 104) and isotropic displacement parameters
(A 2 x 103) for 2……………………………….………………………157
Table 3-4.12 Atomic coordinates ( x 104) and equivalent isotropic displacement
parameters (A 2x 103) for 5. U(eq) is defined as one third of the trace
of the orthogonalized Uij tensor………………………………………159
Table 3-4.13 Bond lengths [A ] and angles [°] for 5
Table 3-4.15 Hydrogen coordinates ( x 104) and isotropic displacement parameters
(A 2 x 103) for 5……………………………………………………….163
Table 3-4.14 Anisotropic displacement parameters (A 2 x 103) for 5. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ...
+ 2 h k a* b* 12 ]……………………………………………………..163
參考文獻
(1) 陳孟瑤, 碩士論文, 國立中央大學化學研究所, 民國94年7月。
(2) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson,
    T.;Huxley, A. J. M.;McCoy, C. P.; Rademacher, J. T.; 
    Rice, T. E. Chem. Rev. 1997, 97, 1515-1566.
(3) 林哲生, 碩士論文, 國立中央大學化學研究所, 民國89年6月。
(4) 高憲章, 博士論文, 私立淡江大學化學研究所, 民國99年5月。
(5) Bencheikh-Latmani, R.; Obraztsova, A.; Mackey, M. R.;  
    Ellisman, M. H.; Tebo, B. M. Environ. Sci. Technol.   
    2007, 41, 214.
(6) Vincent, J. B. Nutr. Rev. 2000, 58, 67.
(7) For iron-responsive sensors, see: (a) Fan, L.-J.; Jones, 
    W. E., Jr. J. Am. Chem.Soc. 2006, 128, 6784. (b) Bricks, 
    J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.;   
    Bu‥schel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K. J. 
    Am. Chem. Soc. 2005, 127, 13522. (c) Tumambac, G. E.;  
    Rosencrance, C. M.; Wolf, C. Tetrahedron 2004, 60, 
    11293. (d) Xiang, Y.; Tong, A. Org. Lett. 2006, 8, 1549.
(8) Sarkar, M.; Banthia, S.; Samanta, A. Tetrahedron Lett. 
    2006, 47, 7575.
(9) Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. 
    Org. Lett. 2007, 9,   
    4567-4570.
(10) Bernhardt, P. V.; Moore, E. G.; Riley, M. J. Inorg.  
     Chem. 2001, 40, 5799-5805.
(11) Ravikumar, I.; Ghosh, P. Inorg. Chem. 2011, 50, 4229.
(12) Merrill, D.; Harrington, J. M.; Lee, H. S.; Hancock, R. 
     D. Inorg. Chem. 2011, 50, 8348.
(13) Carolan, A. N.; Mroz, A. E.; El Ojaimi, M.; VanDerveer, 
     D. G.; Thummel, R. P.; Hancock, R. D. Inorg. Chem. 
     2012, 51, 3007.
(14) Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. J. 
     Am. Chem. Soc.2005, 127, 10197-10204.
(15) Dziedzic-Kocurek, K.; Byrne, H.; Swiderski, A.; Stanek, 
     J. Acta Physica Polinica A, 2009, 115, 525-555. 
(16) Gafford, B. G.; O'Rear, C.; Zhang, J. H.; O'Connor, C. 
     J.; Holwerda, R. A.Inorg. Chem. 1989, 28, 1720-1726.
(17) Kao, H. C.; Hsu, C. J.; Hsu, C. W.; Lin, C. H.; Wang, 
     W. J. Tetrahedron Lett. 2010, 51, 3743.
(18) Yang, P.; Yang, Y.; Zhang, C.; Yang, X.-J.; Hu, H.-M.; 
     Gao, Y.; Wu, B. Inorganica Chimica Acta 2009, 362, 89.
(19) Papankova, B. e.; Svoboda, I.; Fuess, H.; Sintalova, K. 
     Acta Crystallographica Section E Structure Reports 
     Online 2005, 61, m2036.
(20) (a) Plowman, J. E.; Loehr, T. M.; Schauer, C. K.; 
     Anderson, O, P. Inorg. Chem.1984, 23, 3553-3559. (b) 
     Weldon, B. T.; Wheeler, D. E.; Kirby, J. P.; McCusker,  
     J. K. Inorg. Chem. 2001, 40, 6802-6812. (c) Ghosh, S. 
     K.; Patra, R.; Rath, S. P. Inorg. Chem. 2010, 49, 
     3449–3460. (d) Picraux, L. B.; Smeigh, A. L.; Guo, D.; 
     McCusker, J. K. Inorg. Chem. 2005, 44, 7846–7859.
(21) Raznoshik, H.; Zilberman I.; Maimon E.; Ellern, A.; 
     Cohen, H.; Meyerstein D. Inorg. Chem. 2003, 42, 
     7156-7161.
(22) Zhao, Q.; Li, R. F.; Xing, S. K.; Liu, X. M.; Hu, T. 
     L.; Bu, X. H. Inorg. Chem. 2011, 50, 10041.
(23) Chen, Q. Y.; Huang, J.; Guo, W. J.; Gao, J. 
     Spectrochimica acta. Part A, Molecular and biomolecular 
     spectroscopy 2009, 72, 648.
(24) Donald, M.; Kurtz, J. R. Chem. Rev. 1990. 90. 585-606.
(25) Brown, C. A.; Remar, G. J.; Musselman, R. L.; Solomon, 
     E. I. Inorg. Chem. 1995, 34, 688-717.
(26) Sanders-Loehr, J.; Wheeler, W. D.; Shiemke, A. K.; 
     Averill, B. A.; Loehr, T. M. J. Am. Chem. Soc. 1989, 
     111, 8084-8093.
(27) Shiemke, A. K.; Loehr, T. M.; Sanders-Loehr, J. J. Am. 
     Chem. Soc. 1984, 106, 4951-4956.
(28) Hamilton, J. M.; Whitehead, J. R.; Williams, N. J.; 
     Ojaimi, M. E.; Thummel, R. P.; Hancock, R. D. Inorg. 
     Chem. 2011, 50, 3785–3790 
(29) (a) Frisch, M. J.; et. al. Gaussian 03; Gaussian, Inc.: 
     Pittsburgh, PA, 2003. (b) Bauernschmitt, R.; Ahlrichs, 
     R. Chem. Phys. Lett. 1996, 256, 454-464.
(30) (a) Becke, A. D.; J. Chem. Phys. 1985, 82, 270-283. (b) 
     Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 
     785-789.
(31) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82,   
     270-283. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 
     1985, 82, 284-298.
(32) Garrett, T. M.; Koert, U.; Lehn, J. M. J. Phy. Org.   
     Chem. 1992, 5, 529.
(33) (a) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler,  
     A. D. Talanta 1985, 32, 95–101. (b) Gampp, H.; Maeder, 
     M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 
     251–264. (c) Gampp, H.; Maeder, M.; Meyer, C. J.; 
     Zuberbuhler, A. D. Talanta 1985, 32, 1133–1139. (d) 
     Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. 
     Talanta 1986, 33, 943–951.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信