淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1807201311440600
中文論文名稱 建構手機玩線上遊戲之動機與阻礙量表
英文論文名稱 Developing the scales to measure the motivation and constraint of playing mobile online game
校院名稱 淡江大學
系所名稱(中) 管理科學學系碩士班
系所名稱(英) Master’s Program, Department of Management Sciences
學年度 101
學期 2
出版年 102
研究生中文姓名 張育萍
研究生英文姓名 Yu-Ping Chang
學號 600620149
學位類別 碩士
語文別 英文
口試日期 2013-06-26
論文頁數 83頁
口試委員 指導教授-陳水蓮
委員-康信鴻
委員-陳怡妃
中文關鍵字 手機  線上遊戲  探索性因素分析(EFA)  動機  阻礙  科技接受與使用整合理論(UTAUT) 
英文關鍵字 Mobile phone  online game  exploratory factor analysis (EFA)  motivation  constraint  the Unified Theory of Acceptance and Use of Technology (UTAUT) 
學科別分類
中文摘要 本研究的主要目的是建構手機玩線上遊戲之動機與阻礙量表。首先,透過探索性因素分析(EFA),萃取出四個動機因子:逃避、知覺關鍵多數、社會影響與績效預期;而在休閒阻礙的部分,則萃取出六個因子,分別如下:社會阻礙、時間阻礙、身體阻礙、績效阻礙、心理阻礙及轉換障礙。第二,本研究根據探索性因素分析的結果(EFA),將科技接受與使用整合理論(UTAUT)的四個構面(社會影響、績效預期、付出預期、促進條件)與逃避、知覺關鍵多數做為使用手機玩線上遊戲的休閒動機,而研究結果顯示逃避、知覺關鍵多數、社會影響、績效預期及付出預期對手機玩線上遊戲的態度有顯著的正向影響;知覺阻礙與轉換障礙則是使用手機玩線上遊戲的休閒阻礙,本研究結果也發現使用手機玩線上遊戲的態度會被社會阻礙、時間阻礙、績效阻礙、心理阻礙及轉換障礙影響。此外,無論是動機還是阻礙,手機玩線上遊戲的態度都會正向影響行為意圖。最後,本研究提出理論意涵、管理意涵與未來可研究方向做為手機遊戲業者及後續研究者參考。
英文摘要 The purpose of this study was to develop scales to measure “motivation” and “constraint” for playing online games using mobile phones. First, this thesis reveals four motivation factors based on exploratory factor analysis (EFA): escapism, performance expectancy, perceived critical mass, and social influence. EFA also extracted six leisure constraints: social, time, physical, performance, psychological, and switching barriers. Second, based on the EFA results, this study used four constructs of the Unified Theory of Acceptance and Use of Technology (UTAUT) model and two other constructs (escapism and perceived critical mass) as leisure motivations for using mobile phones to play online games. Next, the study reveals that escapism, perceived critical mass, performance expectancy, effort expectancy, and social influence all strongly affect attitudes toward playing online games using mobile phones. Perceived constraint and switching barriers are leisure constraints for playing online games through mobile phones according to the EFA results, whereas social, time, performance, psychological, and switching barriers are constraints that affect attitudes towards using mobile phones to play online games. Furthermore, user attitudes affect behavioral intention positively for both motivation and constraint. Finally, the thesis presents theoretical and managerial implications and several directions for future research.
論文目次 Table of Contents
Chapter1 Introduction 1
1.1 Overview 1
1.2 Research Process 4
Chapter2 Literature Review and Research Hypotheses 7
2.1 Leisure Motivation 7
2.2 Escapism 8
2.3 Perceived Critical Mass 8
2.4 The Unified Theory of Acceptance and Use of Technology 9
2.4.1 Social Influence 11
2.4.2 Performance Expectancy 11
2.4.3 Effort Expectancy 12
2.4.4 Facilitating Conditions 13
2.5 Leisure Constraint 13
2.6 Perceived Constraint 14
2.7 Switching Barriers 15
2.8 The Relationship between Escapism and Attitude 16
2.9 The Relationship between Perceived Critical Mass and Attitude 16
2.10 The Relationship between Social Influence and Attitude 17
2.11 The Relationship between Performance Expectancy and Attitude 17
2.12 The Relationship between Effort Expectancy and Attitude 18
2.13 The Relationship between Facilitating Conditions and Attitude 19
2.14 The Relationship between Attitude and Behavioral Intention 19
2.15 The Relationship between Social Constraint and Attitude 20
2.16 The Relationship between Time Constraint and Attitude 21
2.17 The Relationship between Physical Constraint and Attitude 21
2.18 The Relationship between Performance Constraint and Attitude 21
2.19 The Relationship between Psychological Constraint and Attitude 22
2.20 The Relationship between Switching Barriers and Attitude 22
Chapter3 Research Method 24
3.1 Conceptual Research Framework 24
3.2 Measurement Development 25
3.3 Questionnaire Design, Pre-testing 27
3.4 Sampling and Data Collection 28
3.5 Data Analysis Method 29
3.5.1 Descriptive Statistics 29
3.5.2 Exploratory Factor Analysis (EFA) 30
3.5.3 Reliability and Validity Analysis 31
3.5.4 Structural Equation Model (SEM) 32
Chapter4 Data Analysis and Results 33
4.1 Respondents Profiles 33
4.1.1 First Wave (EFA) 33
4.1.2 Second Wave (CFA, SEM) 35
4.2 Exploratory Factor Analysis (EFA) Results 38
4.2.1 Kaiser-Meyer-Olkin (KMO) and Bartlett’s Test of Sphericity 38
4.2.2 Communality 39
4.2.3 Model Fit 43
4.2.4 Validity Analysis 44
4.3 Measurement Model Results 46
4.3.1 CFA and Model Fit 46
4.3.2 Reliability Analysis 47
4.3.3 Validity Analysis 50
4.4 Structural Model Results 51
4.4.1 Overall Model Validation 51
4.4.2 Structural Equation Model Evaluate Hypothesis Test 52
Chapter5 Conclusions 56
5.1 Research Discussion 56
5.1.1 EFA Results Discussion 56
5.1.2 CFA and SEM Results Discussion 56
5.2 Theoretical Implication 60
5.3 Managerial Implication 62
5.4 Limitations and Future Research 63
Reference 64
Appendix 74
1. 第一波問卷(動機) 74
2. 第一波問卷(阻礙) 76
3. 第二波問卷(動機) 79
4. 第二波問卷(阻礙) 81
List of Tables
Table 3-1 Corresponding Literature Sources of the Measure Items 27
Table 4-1 Frequency and Percentage of the Demographic Variables for Motivation (EFA) 34
Table 4-2 Frequency and Percentage of the Demographic Variables for Constraint (EFA) 35
Table 4-3 Frequency and Percentage of the Demographic Variables for Motivation (CFA, SEM) 36
Table 4-4 Frequency and Percentage of the Demographic Variables for Constraint (CFA, SEM) 37
Table 4-5 KMO and Bartlett’s test of EFA for Motivation 38
Table 4-6 KMO and Bartlett’s test of EFA for Constraint 39
Table 4-7 Varimax rotated loading matrix for motivation 39
Table 4-8 EFA factor analysis for motivation 40
Table 4-9 Varimax rotated loading matrix for constraint 41
Table 4-10 EFA factor analysis for constraint 42
Table 4-11 CFA model fits of EFA for motivation 43
Table 4-12 CFA model fits of EFA for constraint 43
Table 4-13 Measurement properties of EFA for motivation 44
Table 4-14 Chi-Square Difference Results for motivation 44
Table 4-15 Measurement properties of EFA for motivation 45
Table 4-16 Chi-Square Difference Results for constraint 46
Table 4-17 CFA model fits for motivation 46
Table 4-18 CFA model fits for constraint 47
Table 4-19 Measurement properties for motivation 48
Table 4-20 Measurement properties for constraint 49
Table 4-21 Chi-Square Difference Results for motivation 50
Table 4-22 Chi-Square Difference Results for constraint 51
Table 4-23 Goodness-of-fit measures of the structural model for motivation 52
Table 4-24 Goodness-of-fit measures of the structural model for constraint 52
Table 4-25 The results of the structural equation model for motivation 54
Table 4-26 The results of the structural equation model for constraint 55
Table 5-1 Hypotheses Results of Motivation 58
Table 5-2 Hypotheses Results of Constraint 60


List of Figures
Figure 1-1 Research Process 6
Figure 3-1 Research Framework of Motivation 24
Figure 3-2 Research Framework of Constraint 25
Figure 4-1 Structural equation model of hypotheses testing result for motivation 53
Figure 4-2 Structural equation model of hypotheses testing result for constraint 55
參考文獻 Reference
中文文獻
周采萱(2012)。瘋智慧手機 小心「滑」出一身病。現代保險 健康+理財雜誌,282期。
國家通訊傳播委員會(NCC). (2012/9/18). 2011第四季我國行動上網觀測. http://www.find.org.tw/find/home.aspx?page=many&id=333
資策會 FIND. (2012/10/3). 2012 年台灣民眾行動與無線上網現況. http://www.find.org.tw/find/home.aspx?page=many&id=335
資策會FIND. (2011/7/26). 未來生活,從「心」出發,融入創新力、設計力、科技化的五大「貼心」服務體驗. http://www.find.org.tw/find/home.aspx?page=many&id=291
資策會FIND. (2013/3/14). 台灣消費者使用智慧型手機行為解密:社群、拍照與定位成為三大關鍵應用. http://www.find.org.tw/find/home.aspx?page=many&id=312

英文文獻
Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision Sciences, 28(3), 557-582.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. Englewood Cliffs, N.J.: Prentice-Hall.
AlAwadhi, S., & Morris, A. (2008). The use of the UTAUT model in the adoption of E-government services in kuwait. Paper presented at the Hawaii International Conference on System Sciences, Proceedings of the 41st Annual, pp. 219-219.
ALEXANDRIS, K., & STODOLSKA, M. (2004). The influence of perceived constraints on the attitudes toward recreational sport participation. Loisir Et Societe, 27(1), 197-217.
Allen, N. J., & Meyer, J. P. (1990). The measurement and antecedents of affective, continuance and normative commitment to the organization. Journal of Occupational Psychology, 63(1), 1-18.
Anderson, R. E., Black, W. C., Hair, J. F., & Tatham, R. L. (1998). Multivariate data analysis Prentice-Hall London.
Backman, S. J., & Crompton, J. L. (1989). Discriminating between continuers and discontinuers of two public leisure services. Journal of Park and Recreation Administration, 7(4), 56-71.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Balabanis, G., Reynolds, N., & Simintiras, A. (2006). Bases of e-store loyalty: Perceived switching barriers and satisfaction. Journal of Business Research, 59(2), 214-224.
Bauer, R. A. (1960). Consumer behavior as risk taking. Dynamic Marketing for a Changing World, 398
Beard, J. G., & Ragheb, M. G. (1983). Measuring leisure motivation. Journal of Leisure Research, 15(3), 219-228.
Bendapudi, N., & Berry, L. L. (1997). Customers' motivations for maintaining relationships with service providers. Journal of Retailing, 73(1), 15-37.
Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214.
Browne, M. W., Cudeck, R., Bollen, K. A., & Long, J. S. (1993). Alternative ways of assessing model fit. Sage Focus Editions, 154, 136-136.
Buchanan, T., & Allen, L. (1985). Barriers to recreation participation in later life cycle stages. Therapeutic Recreation Journal, 19(3), 39-50.
Caplan, S., Williams, D., & Yee, N. (2009). Problematic internet use and psychosocial well-being among MMO players. Computers in Human Behavior, 25(6), 1312-1319.
Carron, A. V. (1982). Cohesiveness in sport groups: Interpretations and considerations. Journal of Sport Psychology, 4(2) ,123-138.
Chan, F., Thong, J. Y., Venkatesh, V., Brown, S., Hu, P., & Tam, K. Y. (2010). Modeling citizen satisfaction with mandatory adoption of an e-government technology. Journal of the Association for Information Systems, 11(10), 519-549.
Chang, E., & Tseng, Y. (2011). Research note: E-store image, perceived value and perceived risk. Journal of Business Research, 66(7), 864–870.
Chau, P. Y. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, , 185-204.
Chen, L. S. (2010). The impact of perceived risk, intangibility and consumer characteristics on online game playing. Computers in Human Behavior, 26(6), 1607-1613.
Chen, L. S. (2013). Consumer-based leisure constraint for online gaming. The Service Industries Journal, 33(1), 115-132.
Chen, M., & Pang, X. (2012). Leisure motivation: An integrative review. Social Behavior and Personality: An International Journal, 40(7), 1075-1081.
Chen, S., Yen, D. C., & Hwang, M. I. (2012). Factors influencing the continuance intention to the usage of web 2.0: An empirical study. Computers in Human Behavior, 28(3), 933-941.
Chiu, C., & Wang, E. T. (2008). Understanding web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194-201.
Compeau, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information Systems Research, 6(2), 118-143.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of Applied Social Psychology, 22(14), 1111-1132.
DFC Intelligence. (July 16, 2012). Online game market forecasts. http://www.prweb.com/releases/2012/7/prweb9701884.htm
DFC Intelligence. (June 3, 2013). Worldwide market forecasts for the video game and interactive entertainment industry through to 2016. http://www.researchandmarkets.com/reports/1878332/worldwide_market_forecasts_for_the_video_game_and
Dickson, P. R. (1997). Marketing management, Dryden Press.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. Mis Quarterly, 18(4), 453-461.
Dowling, G. R., & Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of Consumer Research, 21(1), 119-134.
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
Field A. (2005). Discovering statistics using SPSS. (2nd ed.) London: Sage Publications.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, Mass.: Addison-Wesley Pub. Co.
Fornell, C. (1992). A national customer satisfaction barometer: The swedish experience. The Journal of Marketing, 56(1), 6-21.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions in internet shopping. Journal of Business Research, 56(11), 867-875.
Fraedrich, J. P., & Ferrell, O. (1992). The impact of perceived risk and moral philosophy type on ethical decision making in business organizations. Journal of Business Research, 24(4), 283-295.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
Grewal, D., Gotlieb, J., & Marmorstein, H. (1994). The moderating effects of message framing and source credibility on the price-perceived risk relationship. Journal of Consumer Research, 21(1), 145-153.
Guo, Y., & Barnes, S. (2011). Purchase behavior in virtual worlds: An empirical investigation in second life. Information & Management, 48(7), 303-312.
Han, H., Back, K., & Barrett, B. (2009). Influencing factors on restaurant customers’ revisit intention: The roles of emotions and switching barriers. International Journal of Hospitality Management, 28(4), 563-572.
Henning, B., & Vorderer, P. (2001). Psychological escapism: Predicting the amount of television viewing by need for cognition. Journal of Communication, 51(1), 100-120.
Hightower Jr, R., Brady, M. K., & Baker, T. L. (2002). Investigating the role of the physical environment in hedonic service consumption: An exploratory study of sporting events. Journal of Business Research, 55(9), 697-707.
Holsapple, C. W., & Wu, J. (2007). User acceptance of virtual worlds: The hedonic framework. ACM SIGMIS Database, 38(4), 86-89.
Hsu, C., & Lu, H. (2007). Consumer behavior in online game communities: A motivational factor perspective. Computers in Human Behavior, 23(3), 1642-1659.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
Hua, G., & Haughton, D. (2009). Virtual worlds adoption: A research framework and empirical study. Online Information Review, 33(5), 889-900.
Iso-Ahola, S. E., & Allen, J. R. (1982). The dynamics of leisure motivation: The effects of outcome on leisure needs. Research Quarterly for Exercise and Sport, 53(2), 141-149.
Jackson, E. L. (1988). Leisure constraints∗: A survey of past research. Leisure Sciences, 10(3), 203-215.
Jeng, D. J., & Tzeng, G. (2012). Social influence on the use of clinical decision support systems: Revisiting the unified theory of acceptance and use of technology by the fuzzy DEMATEL technique. Computers & Industrial Engineering, 62(3), 819-828.
Jeng, S., & Teng, C. (2008). Personality and motivations for playing online games. Social Behavior and Personality: An International Journal, 36(8), 1053-1060.
Johnson, C., & Mathews, B. P. (1997). The influence of experience on service expectations. International Journal of Service Industry Management, 8(4), 290-305.
Jung, Y., & Kang, H. (2010). User goals in social virtual worlds: A means-end chain approach. Computers in Human Behavior, 26(2), 218-225.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
Kaplan, L. B., Szybillo, G. J., & Jacoby, J. (1974). Components of perceived risk in product purchase: A cross-validation. Journal of Applied Psychology, 59(3), 287.
Karjaluoto, H., Mattila, M., & Pento, T. (2002). Factors underlying attitude formation towards online banking in finland. International Journal of Bank Marketing, 20(6), 261-272.
Keaveney, S. M. (1995). Customer switching behavior in service industries: An exploratory study. The Journal of Marketing, 59(2), 71-82.
Kim, H., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. Mis Quarterly, 33(3), 567-582.
Kim, J., & Haridakis, P. M. (2009). The role of internet user characteristics and motives in explaining three dimensions of internet addiction. Journal of Computer‐Mediated Communication, 14(4), 988-1015.
Kim, M. G., & Kim, J. (2010). Cross-validation of reliability, convergent and discriminant validity for the problematic online game use scale. Computers in Human Behavior, 26(3), 389-398.
Kim, M., Park, M., & Jeong, D. (2004). The effects of customer satisfaction and switching barrier on customer loyalty in korean mobile telecommunication services. Telecommunications Policy, 28(2), 145-159.
Koo, D. (2009). The moderating role of locus of control on the links between experiential motives and intention to play online games. Computers in Human Behavior, 25(2), 466-474.
Lai, C., Li, X. R., & Harrill, R. (2013). Chinese outbound tourists' perceived constraints to visiting the united states. Tourism Management, 37, 136-146.
Lee, D. P. (2010). The Influence of Leisure Constraints on Preference for and Participation in Exhibitions in South Korea.
Lee, M. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141.
Liang, H., Xue, Y., Ke, W., & Wei, K. K. (2010). Understanding the influence of team climate on IT use. Journal of the Association for Information Systems, 11(8), 414-432.
Liebowitz, S. J., & Margolis, S. E. (1995). Are network externalities a new source of market failure? Research in Law and Economics, 17(0), 1-22.
Lim, N. (2003). Consumers’ perceived risk: Sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-228.
Lin, C., Tsai, Y. H., Wang, Y., & Chiu, C. (2011). Modeling IT relationship quality and its determinants: A potential perspective of network externalities in e-service. Technological Forecasting and Social Change, 78(1), 171-184.
Lin, Julia Ying-Chao. (2007). The relationship between extroversion and leisure motivation: Evidence from fitness center part icipation. Socail Behavior and Personality, 35 (10), 1317-1322
Littler, D., & Melanthiou, D. (2006). Consumer perceptions of risk and uncertainty and the implications for behaviour towards innovative retail services: The case of internet banking. Journal of Retailing and Consumer Services, 13(6), 431-443.
Lou, H., Luo, W., & Strong, D. (2000). Perceived critical mass effect on groupware acceptance. European Journal of Information Systems, 9(2), 91-103.
Lu, J., Yao, J. E., & Yu, C. (2005). Personal innovativeness, social influences and adoption of wireless internet services via mobile technology. The Journal of Strategic Information Systems, 14(3), 245-268.
Maldonado, U. P. T., Khan, G. F., Moon, J., & Rho, J. J. (2011). E-learning motivation and educational portal acceptance in developing countries. Online Information Review, 35(1), 66-85.
Malhotra, Y., & Galletta, D. F. (1999). Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. Paper presented at the System Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference on Track1, 1-14.
Mantymaki, M., & Salo, J. (2013). Purchasing behavior in social virtual worlds: An examination of habbo hotel. International Journal of Information Management, 33(2), 282-290.
Markus, M. L. (1987). Toward a “Critical mass” theory of interactive media universal access, interdependence and diffusion. Communication Research, 14(5), 491-511.
Markus, M. L. (1994). Electronic mail as the medium of managerial choice. Organization Science, 5(4), 502-527.
Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
Mathwick, C., Malhotra, N., & Rigdon, E. (2001). Experiential value: Conceptualization, measurement and application in the catalog and internet shopping environment☆. Journal of Retailing, 77(1), 39-56.
Min, Q., Ji, S., & Qu, G. (2008). Mobile commerce user acceptance study in china: A revised UTAUT model. Tsinghua Science & Technology, 13(3), 257-264.
Mitchell, V. (1999). Consumer perceived risk: Conceptualisations and models. European Journal of Marketing, 33(1/2), 163-195.
Mitchell, V., & Greatorex, M. (1993). Risk perception and reduction in the purchase of consumer services. Service Industries Journal, 13(4), 179-200.
Mitchell, V., & Harris, G. (2005). The importance of consumers' perceived risk in retail strategy. European Journal of Marketing, 39(7/8), 821-837.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
Moutinho, L. (1987). Consumer behaviour in tourism. European Journal of Marketing, 21(10), 5-44.
Mullen, M. R. (1995). Diagnosing measurement equivalence in cross-national research. Journal of International Business Studies, 26(3), 573-596.
Muylle, S., Moenaert, R., & Despontin, M. (2004). The conceptualization and empirical validation of web site user satisfaction. Information & Management, 41(5), 543-560.
Nadirova, A., & Jackson, E. L. (2000). Alternative criterion variables against which to assess the impacts of constraints to leisure. Journal of Leisure Research, 32(4), 396-405.
Ngai, E., Poon, J., & Chan, Y. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & Education, 48(2), 250-267.
Noort, G. V., Kerkhof, P., & Fennis, B. M. (2008). The persuasiveness of online safety cues: The impact of prevention focus compatibility of web content on consumers’ risk perceptions, attitudes, and intentions. Journal of Interactive Marketing, 22(4), 58-72.
Nov, O., & Ye, C. (2009). Resistance to change and the adoption of digital libraries: An integrative model. Journal of the American Society for Information Science and Technology, 60(8), 1702-1708.
Nunnally, J. C. (1978). Psychometric theory. New York: McGraw - hill.
Oliveira, M., & Henderson, T. (2003). What online gamers really think of the internet? Paper presented at the Proceedings of the 2nd Workshop on Network and System Support for Games, 185-193.
Patterson, P. G., & Smith, T. (2003). A cross-cultural study of switching barriers and propensity to stay with service providers. Journal of Retailing, 79(2), 107-120.
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
Peter, J. P., & Ryan, M. J. (1976). An investigation of perceived risk at the brand level. Journal of Marketing Research, 13(2), 184-188.
Piper, W. E., Marrache, M., Lacroix, R., Richardsen, A. M., & Jones, B. D. (1983). Cohesion as a basic bond in groups. Human Relations, 36(2), 93-108.
Rogers Everett, M. (1995). Diffusion of innovations. New York.
Rogers, E. M. (2003). Elements of diffusion. 5rd Edn., New York.
Schwarz, A., Schwarz, C., Jung, Y., Perez, B., & Wiley-Patton, S. (2011). Towards an understanding of assimilation in virtual worlds: The 3C approach. European Journal of Information Systems, 21(3), 303-320.
Searle, M. S., & Jackson, E. L. (1985). Recreation non-participation and barriers to participation: Considerations for the management of recreation delivery systems. Journal of Park and Recreation Administration, 3(2), 23-36.
Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research, 15(3), 325-343.
Shin, D., & Kim, W. (2008). Applying the technology acceptance model and flow theory to cyworld user behavior: Implication of the web2. 0 user acceptance. CyberPsychology & Behavior, 11(3), 378-382.
Shin, D., Shin, Y., Choo, H., & Beom, K. (2011). Smartphones as smart pedagogical tools: Implications for smartphones as u-learning devices. Computers in Human Behavior, 27(6), 2207-2214.
Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological Review, 74(1), 29-39.
Sledgianowski, D., & Kulviwat, S. (2009). Using social network sites: The effects of playfulness, critical mass and trust in a hedonic context. Journal of Computer Information Systems, 49(4), 74-83.
Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). ames: Iowa state university press.
Steed, L., & Coakes, S. (2001). SPSS: Analysis without anguish. Brisbane: John Wiley & Son.
Stoel, L., & Lee, K. H. (2003). Modeling the effect of experience on student acceptance of web-based courseware. Internet Research, 13(5), 364-374.
Stone, R. N., & Gronhaug, K. (1993). Perceived risk: Further considerations for the marketing discipline. European Journal of Marketing, 27(3), 39-50.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. Mis Quarterly, 15(1), 125-143.
Turel, O., & Yuan, Y. (2007). User acceptance of web-based negotiation support systems: The role of perceived intention of the negotiating partner to negotiate online. Group Decision and Negotiation, 16(5), 451-468.
Urdan, T., & Schoenfelder, E. (2006). Classroom effects on student motivation: Goal structures, social relationships, and competence beliefs. Journal of School Psychology, 44(5), 331-349.
Uzoka, F. E. (2008). Organisational influences on e-commerce adoption in a developing country context using UTAUT. International Journal of Business Information Systems, 3(3), 300-316.
Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in china. Computers & Education, 50(3), 838-852.
Vorderer, P. (1996). Rezeptionsmotivation: Warum nutzen rezipienten mediale unterhaltungsangebote. Publizistik, 41(3), 310-326.
Voss, K. E., Spangenberg, E. R., & Grohmann, B. (2003). Measuring the hedonic and utilitarian dimensions of consumer attitude. Journal of Marketing Research, 40(3), 310-320.
Wheaton, B. (1987). Assessment of fit in overidentified models with latent variables. Sociological Methods & Research, 16(1), 118-154.
Yang, S., Park, J., & Park, J. (2007). Consumers’ channel choice for university-licensed products: Exploring factors of consumer acceptance with social identification. Journal of Retailing and Consumer Services, 14(3), 165-174.
Yiu, C. S., Grant, K., & Edgar, D. (2007). Factors affecting the adoption of internet banking in hong Kong—implications for the banking sector. International Journal of Information Management, 27(5), 336-351.
Yoo, S. J., Han, S., & Huang, W. (2012). The roles of intrinsic motivators and extrinsic motivators in promoting e-learning in the workplace: A case from south korea. Computers in Human Behavior, 28(3), 942-950.
Young, K. (2009). Understanding online gaming addiction and treatment issues for adolescents. The American Journal of Family Therapy, 37(5), 355-372.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信