§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201310103100
DOI 10.6846/TKU.2013.00669
論文名稱(中文) 使用T-S模糊小腦控制DC-DC昇壓式轉換器之輸出電壓調節
論文名稱(英文) Output Voltage Regulation For DC-DC Boost Converter using Takagi-Sugeno Fuzzy Cerebellar Model Articulation Control
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 王得丞
研究生(英文) Dei-Cheng Wang
學號 600470206
學位類別 碩士
語言別 英文
第二語言別
口試日期 2013-06-27
論文頁數 48頁
口試委員 指導教授 - 劉寅春(pliu@mail.tku.edu.tw)
委員 - 江東昇
委員 - 邱謙松
關鍵字(中) CMAC
T-S模糊
線性矩陣不等式
關鍵字(英) T-S fuzzy
Linear matrix inequalities
CMAC
第三語言關鍵字
學科別分類
中文摘要
本論文提出使用T-S模糊小腦模型控制DC-DC升壓轉換器的輸出電壓調節。模糊和非線性系統控制理論,是我們實現DC-DC升壓轉換器的基礎。T-S CMAC設計的靈感來自於PDC設計控制增益和權重值成一個單一的向量擴充與T-S模糊和CMAC相似。這種方法的優點有三個方面, 1) CMAC的初始權重提高了準確性 - 我們CMAC的權重使用從PDC設計的LMI解出的控制增益。2)基於LMI設計引入了自適應能力CMAC的設計允許時變參數在系統中。3) 放寬對系統不確定性的假設, 我們放棄去假設一個系統不確定性嚴格上限為已知。
英文摘要
We propose a output voltage regulation for DC-DC boost converter using Takagi-Sugeno fuzzy cerebellar model articulation control (T-S CMAC). The theory control for fuzzy and nonlinear systems is our mainly theory to implement the DC-DC Boost converter. The T-S CMAC design is inspired by the architectural similarity of the T-S fuzzy and CMAC where the PDC design control gains and weighting parameter are augmented into a single vector. The advantages of this approach are three fold, i) increases accuracy of CMAC initial weights - we assign the initial weights of CMAC using the control gains solved by the LMIs from the PDC design; and ii) introduces adaptive ability in LMI-based design - the CMAC design allows time-varying parameters in the system; and iii) relaxes assumption on system uncertainty - we drop the assumption that a strict upper bound on system uncertainty is known.
第三語言摘要
論文目次
Contents
Abstract in Chinese I
Abstract in English II
Contents III
List of Figures V
List of Tables VII
1 Introduction 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Fuzzy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Cerebellar Model Articulation Controller with T-S Fuzzy Model 4
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Problem Formulation and Motivations . . . . . . . . . . . . . . . . . . 12
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 DC-DC Boost Converter Mathematical Model 13
2.1 DC-DC Boost Converter Structure . . . . . . . . . . . . . . . . . . . . 13
2.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Averaging Method of One Time Scale Discontinuous System . . 14
2.2.2 DC-DC Boost Converter Maths models . . . . . . . . . . . . . . 15
3 Takagi-Sugeno Fuzzy Cerebellar Model Articulation Controller 20
3.1 Nominal Tracking Controller . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Overall Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Numerical Simulations 27
4.1 DC-DC Boost Converter Element Choose . . . . . . . . . . . . . . . . . 27
4.2 DC-DC Boost Converter Simulations and Results . . . . . . . . . . . . 30
4.2.1 Example 1 (Reference voltage variation test) . . . . . . . . . . . 30
4.2.2 Example 2 (Varying load in different reference voltage) . . . . . 33
5 Practical Experiments 36
5.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Conclusions and Future Works 40
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Z-Source Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 Harmonic compute and measure . . . . . . . . . . . . . . . . . . 43
References 31
List of Figures
1.1 CMAC basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 CMAC separate each input to each memory region . . . . . . . . . . . 5
1.3 CMAC structure with T-S fuzzy model . . . . . . . . . . . . . . . . . . 6
2.1 System structure of DC-DC Boost Converter . . . . . . . . . . . . . . . 13
2.2 MOSFET turn-on condition . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 MOSFET turn-off condition . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Boundary condition at DC-DC Boost Converter’s CCM/DCM . . . . . 29
4.2 Output voltage ripple at DC-DC Boost Converter’s CCM condition . . 29
4.3 Output Voltage when Vref = 40v, RLoad = 60Ω. . . . . . . . . . . . . . 31
4.4 Output error when Vref = 40v, RLoad = 60Ω. . . . . . . . . . . . . . . . 31
4.5 Output Voltage when Vref = 60v, RLoad = 60Ω. . . . . . . . . . . . . . 32
4.6 Output error when Vref = 60v, RLoad = 60Ω. . . . . . . . . . . . . . . . 32
4.7 Output Voltage when Vref = 40v, RLoad = 100Ω. . . . . . . . . . . . . . 34
4.8 Output error when Vref = 40v, RLoad = 100Ω. . . . . . . . . . . . . . . 34
4.9 Output Voltage when Vref = 60v, RLoad = 100Ω. . . . . . . . . . . . . . 35
4.10 Output error when Vref = 60v, RLoad = 100Ω. . . . . . . . . . . . . . . 35
5.1 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 DSP card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 DSP I/O box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 TDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1 ZSI system structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Non-shoot-through states . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Shoot-through states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
List of Tables
4.1 Parameter of DC-DC Boost Converter . . . . . . . . . . . . . . . . . . 30
4.2 Parameter of DC-DC Boost Converter . . . . . . . . . . . . . . . . . . 33
參考文獻
[1] L. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.
[2] R. Isermann, “On fuzzy logic applications for automatic control, supervision, and
fault diagnosis,” Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 28, no. 2, pp. 221–235, 1998.
[3] F. S. Lin, “Integral fuzzy control and application on power converter,” Master’s
thesis, CYCU, 2003.
[4] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,”
Fuzzy sets and systems, vol. 45, no. 2, pp. 135–156, 1992.
[5] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
in system and control theory. Society for Industrial Mathematics, 1994, vol. 15.
[6] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation
controller,” in (CMAC), Trans. Asme, Series G. Journal of Dynamic
System, Measurement and Control. Citeseer, 1975.
[7] C. shin Lin and C.-T. Chiang, “Learning convergence of cmac technique,” Neural
Networks, IEEE Transactions on, vol. 8, no. 6, pp. 1281–1292, 1997.
[8] Y. Kim and F. Lewis, “Optimal design of cmac neural-network controller for robot
manipulators,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 30, no. 1, pp. 22–31, 2000.
[9] T. Takagi and M. Sugeno, “Fuzzy identification of system and its applications to
modelling and control,” IEEE Trans. Syst., Man, and Cyber, vol. 15, pp. 116–132,
1985.
[10] K. Lian, T. Chiang, C. Chiu, and P. Liu, “Synthesis of fuzzy model-based designs
to synchronization and secure communications for chaotic systems,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 31, no. 1, pp.
66–83, 2001.
[11] A. Jadbabaie, A. Titli, and M. Jamshidi, “Fuzzy observer-based control of nonlinear
systems,” in Decision and Control, 1997., Proceedings of the 36th IEEE
Conference on, vol. 4. IEEE, 1997, pp. 3347–3349.
[12] K. Tanaka, T. Kosaki, and H. Wang, “Backing control problem of a mobile robot
with multiple trailers: fuzzy modeling and lmi-based design,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 28,
no. 3, pp. 329–337, 1998.
[13] C. Kung and C. Liao, “Fuzzy-sliding mode controller design for tracking control
of nonlinear system,” in American Control Conference, 1994, vol. 1. IEEE, 1994,
pp. 180–184.
[14] H. Lam, F. Leung, and P. Tam, “Fuzzy control of dc-dc switching converters based
on ts modeling approach,” in Industrial Electronics Society, 1998. IECON'98. Pro-
ceedings of the 24th Annual Conference of the IEEE, vol. 2. IEEE, 1998, pp.
1052–1054.
[15] C. Olalla, R. Leyva, A. El Aroudi, P. Garces, and I. Queinnec, “Lmi robust control
design for boost pwm converters,” Power Electronics, IET, vol. 3, no. 1, pp. 75–85,
2010.
[16] K. Yao, X. Ruan, X. Mao, and Z. Ye, “Variable duty cycle control to achieve
high input power factor for dcm boost pfc converter,” Industrial Electronics, IEEE
Transactions on, no. 99, pp. 1–1, 2011.
[17] H. HUANG, C. HSIEH, J. LIAO, and K. CHEN, “Adaptive droop resistance technique
for adaptive voltage positioning in boost dc-dc converters,” IEEE transac-
tions on power electronics, vol. 26, no. 7-8, pp. 1920–1932, 2011.
[18] N. Y. Zhonghan Shen and H. Min, “A multimode digitally controlled boost converter
with pid auto-tuning and constant frequency/constant off-time hybrid pwm
control,” Power Electronics, IEEE Transactions on, no. 99, pp. 1–1, 2011.
[19] S. Mishra, K. Jha, and K. Ngo, “Dynamic linearizing modulator for large-signal linearization
of a boost converter,” Power Electronics, IEEE Transactions on, vol. 26,
no. 10, pp. 3046 –3054, oct. 2011.
[20] J.-J. Yun, H.-J. Choe, Y.-H. Hwang, Y.-K. Park, and B. Kang, “Improvement
of power-conversion efficiency of a dc-dc boost converter using a passive snubber
circuit,” Industrial Electronics, IEEE Transactions on, vol. 59, no. 4, pp. 1808
–1814, april 2012.
[21] M. Amin and O. Mohammed, “Development of high-performance grid-connected
wind energy conversion system for optimum utilization of variable speed wind
turbines,” Sustainable Energy, IEEE Transactions on, vol. 2, no. 3, pp. 235 –245,
july 2011.
[22] G. Pannell, D. Atkinson, and B. Zahawi, “Analytical study of grid-fault response
of wind turbine doubly fed induction generator,” Energy Conversion, IEEE Trans-
actions on, vol. 25, no. 4, pp. 1081 –1091, dec. 2010.
[23] H. Wang, C. Nayar, J. Su, and M. Ding, “Control and interfacing of a gridconnected
small-scale wind turbine generator,” Energy Conversion, IEEE Trans-
actions on, vol. 26, no. 2, pp. 428 –434, june 2011.
[24] S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Martinez-Velasco, C. Silva,
J. Pontt, and J. Rodriguez, “Control strategies based on symmetrical components
for grid-connected converters under voltage dips,” Industrial Electronics, IEEE
Transactions on, vol. 56, no. 6, pp. 2162 –2173, june 2009.
[25] W. Hu, Z. Chen, Y. Wang, and Z. Wang, “Flicker mitigation by active power control
of variable-speed wind turbines with full-scale back-to-back power converters,”
Energy Conversion, IEEE Transactions on, vol. 24, no. 3, pp. 640 –649, sept. 2009.
[26] B. Liu, X. Yang, Y. Zhang, H. Ye, and F. Kong, “A new control strategy combing pi
and quasi-pr control under rotate frame for three phase grid-connected photovoltaic
inverter,” in Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th
International Conference on. IEEE, 2011, pp. 882–888.
[27] Y.-H. Chang, “Design and analysis of multistage multiphase switched-capacitor
boost dc-ac inverter,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 58, no. 1, pp. 205–218, 2011.
[28] K.-Y. Lian, C.-S. Chiu, T.-S. Chiang, and P. Liu, “Lmi-based fuzzy chaotic synchronization
and communications,” Fuzzy Systems, IEEE Transactions on, vol. 9,
no. 4, pp. 539–553, 2001.
[29] J. Sun and H. Grotstollen, “Averaged modelling of switching power converters:
Reformulation and theoretical basis,” in Power Electronics Specialists Conference,
1992. PESC'92 Record., 23rd Annual IEEE. IEEE, 1992, pp. 1165–1172.
[30] R.-J. Wai and L.-C. Shih, “Design of voltage tracking control for dc-dc boost converter
via total sliding-mode technique,” Industrial Electronics, IEEE Transactions
on, vol. 58, no. 6, pp. 2502–2511, 2011.
[31] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear
systems: stability and design issues,” Fuzzy Systems, IEEE Transactions on, vol. 4,
no. 1, pp. 14–23, 1996.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信