§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807201308464000
DOI 10.6846/TKU.2013.00668
論文名稱(中文) Paenibacillus mucilaginosus TKU032生產生物界面活性劑與胞外多醣之條件與特性分析
論文名稱(英文) Production and characterization of biosurfactant and extracellular polysaccharide from Paenibacillus mucilaginosus TKU032
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 曾詩純
研究生(英文) Shih-Chun Tseng
學號 600180052
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-07-04
論文頁數 127頁
口試委員 指導教授 - 王三郎
委員 - 梁慈雯
委員 - 陳佑汲
關鍵字(中) Paenibacillus mucilaginosus
胞外多醣
生物界面活性劑
烏賊軟骨粉
關鍵字(英) Paenibacillus mucilaginosus
EPS
Biosurfactant
第三語言關鍵字
學科別分類
中文摘要
本研究初始是以篩選生物界面活性劑生產菌為主,然而於篩菌過程中,意外發現P. mucilaginosus TKU032這株細菌發酵烏賊軟骨所得上清液,除了生產界面活性劑之外,置於室溫中會逐漸形成膠狀物質,而且顏色會漸漸加深,初步實驗發現此膠狀物為一多醣類物質,故將研究方向分為P. mucilaginosus TKU032這株細菌所產生生物界面活性劑及胞外多醣之研究。
以烏賊軟骨粉( SPP)、蝦頭殼粉( SHP)作為碳/氮源,依不同比例 (0.5%-2%)之添加濃度,於25℃、30℃、37℃培養0-5天,發現以2%烏賊軟骨、37℃培養3天之發酵上清液能得到最低的表面張力,相同條件培養四天可得到最多之胞外多醣,至第五天觀察發酵上清液顏色變黑導致不易測量,因此及選用上述條件作為較佳培養條件培養P. mucilaginosus TKU032。

TKU032發酵所得上清液,其表面張力約為36.3 mN/m經過NaOH調整p H值至12後,置放於4℃、24小時,待其沉澱並以離心方法去除沉澱物,將其上清液冷凍乾燥,再以甲醇溶出可溶物質,減壓濃縮至乾可得棕褐色油狀物,即為純化後之生物界面活性劑(1 g/50 mL)。
TKU032發酵所得上清液經過加熱(121℃、20min)脫色後可得粗胞外多醣( 14.8 g/L),再將粗胞外多醣利用Sevag reagent 去蛋白,得到較純的多醣物質;使用酵素水解與另外取用三種不同酸水解胞外多醣,也可得到水解後結構較小之醣類,利用核磁共振( NMR)光譜及基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF)分析水解後之寡糖結構。
此外以烏賊軟骨作為發酵碳/氮源,TKU032在培養第1天所的上清液有較高的DPPH清除能力(80%)及較佳的總酚含量、還原力。
表單編號 :ATRX-Q03-001-FM0030-01
英文摘要
This study is based on an initial option of screening of biosurfactant-producing bacteria,after we choose thebacteria which produce biosurfactant,we found the strain of  P. mucilaginosus TKU032 have some gell-like substance in the supernatant,and the color of supernatant will become deeper gradually.Preliminary experiments found that this gum is a polysaccharide.This study will be into two part:P. mucilaginosus TKU032 producing bio-surfactants and study of extracellular polysaccharides.
With squid pen powder (SPP), head of the prawn shell powder (SHP) as a carbon / nitrogen source, according to different proportion (0.5% -2%) of the added concentration, at 25 ℃, 30 ℃, 37 ℃ cultured 0-5 days found to be 2% squid cartilage, 37 ℃ fermentation supernatant of cultured for 3 days to get the lowest surface tension.
The same conditions can be obtained up to four days of training extracellular polysaccharide, to observe the fifth day of fermentation supernatant color black lead difficult to measure, and therefore a better choice of culture conditions as the above conditions are cultured P. mucilaginosus TKU032. 
TKU032 fermentation resulting supernatant, the surface tension of about 36.3 mN / m after NaOH to adjust pH values through 12, placed at 4 ℃, 24 hours, wait until the precipitate and the precipitate removed by centrifugation, the supernatant lyophilized and then eluted with methanol-soluble substance was concentrated under reduced pressure to dryness to obtain tan oil which is purified of the bio-surfactant. 
      TKU032 fermentation supernatant obtained after heating (121 ℃, 20min) after bleaching crude extracellular polysaccharide (14.8g / L), then the use of crude extracellular polysaccharide Sevag reagent to protein, enzymatic hydrolysis, dialysis, it can be oligosaccharide structure into smaller substances; another access three different acid hydrolysis extracellular polysaccharide can be obtained in the structure of the carbohydrate is small, the use of nuclear magnetic resonance (NMR) spectra and matrix-assisted laser desorption ionization time of flight mass Instrument (MALDI-TOF) analysis after hydrolysis of oligosaccharide structures. 
      In addition to fermentation squid pen as carbon / nitrogen source, in the first day of TKU032, the culture supernatant have  higher DPPH scavenging ability (80%), and preferably the total phenolic content, reducing  power.

表單編號 :ATRX-Q03-001-FM0030-01
第三語言摘要
論文目次
目錄
頁次
簽名頁
授權書
中文摘要	I
英文摘要	III
致謝	V
目錄	VI
圖目錄	XII
表目錄	XVII
第一章	緒論	1 
1.1生物界面活性劑	4
1.2胞外多醣(exopolysaccharide;EPS)	4
第二章	 文獻回顧	7
2.1 類芽孢桿菌 ( Paenibacillus)之簡介	7
2.2 界面活性劑	7
2.3 界面活性劑之種類	8
2.3.1 陰離子界面活性劑	8
2.3.2 陽離子界面活性劑	9
2.3.3 非離子界面活性劑	9
2.3.4 兩性離子界面活性劑	10
2.4 生物界面活性劑	11
2.5生物界面活性劑之種類	12
2.6 胞外多醣	15
2.7 抗氧化	17
2.7.1 活性氧與氧自由基	17
2.7.2 活性氧與氧自由基之傷害	18
2.7.3 抗氧化劑之作用機制	19
2.7.3.1 自由基終止劑	19
2.7.3.2 還原劑或氧清除劑	20
2.8 幾丁質	20
第三章 材料與方法	24
3.1 實驗材料	24
3.1.1 實驗菌株	24
3.1.2 實驗材料	24
3.1.3 實驗儀器	25
3.2實驗方法	27
3.2.1 生產生物界面活性劑之菌株篩選	27
3.2.2 表面張力測量	27
3.2.3 總醣測定	28
3.2.4 還原醣測定	28
3.3 生物界面活性劑較適生產條件探討	30
3.3.1 碳/氮源探討	30
3.3.2 碳/氮源濃度探討	30
3.3.3 培養基體積探討	30
3.3.4 培養溫度探討	31
3.3.5 培基養pH 值探討	31
3.3.6 較適培養時間	31
3.4 生物界面活性劑之特性分析	32
3.4.1熱穩定性	32
3.4.2鹽安定性	32
3.4.3 p H 安定性	33
3.4.4 臨界微胞濃度	33
3.4.5 乳化指數	33
3.5 EPS較適生產條件探討	35
3.5.1 碳/氮源探討	35
3.5.2 碳/氮源濃度探討	35
3.5.3 培養基體積探討	36
3.5.4 培養溫度探討	37
3.5.5 培基養pH 值探討	37
3.5.6 較適培養時間	37
3.6 EPS置備條件探討	38
3.6.1 粗EPS製備	38
3.6.2 EPS去蛋白	38
3.7 EPS水解	41
3.7.1 酵素水解EPS	41
3.7.2 酸水解EPS	41
3.8 抗氧化活性測試	41
3.8.1 DPPH自由基清除能力之測定	41
3.8.2 總酚含量測定	43
3.8.3 還原力測定	43
3.9 NMR測定	44
第四章 結果與討論	45
4.1 生物界面活性劑生產菌之篩選	45
4.2 菌株TKU032之鑑定	47
4.3生物界面活性劑較適生產條件探討	51
4.3.1培養基濃度探討	51
4.3.2 碳/氮源種類探討	52
4.3.3 培養基體積探討	52
4.3.4 培養溫度探討	53
4.3.5 培基養pH 值探討	53
4.3.6 較適培養時間	53
4.3.7較適培養條件探討	54
4.4 生物界面活性劑之純化與結構鑑定	64
4.4.1 生物界面活性劑純化程序	64
4.4.2 生物界面活性劑結構分析	65
4.5生物界面活性劑特性分析	71
4.5.1 熱穩定性分析	71
4.5.2 鹽安定性分析	76
4.5.3 pH 值安定性分析	79
4.5.4 臨界微胞濃度分析	83
4.5.5 乳化能力分析	86
4.7 胞外多醣生產菌之篩選	90
4.8 胞外多醣生產菌較適生產條件探討	90
4.8.1 培養基種類探討	90
4.8.2碳/氮源濃度探討	91
4.8.3 培養基體積探討	92
4.8.4 培養溫度探討	93
4.8.5 培基養pH 值探討	93
4.8.6 較適培養時間	93
4.8.7較適培養條件探討	94
4.9抗氧化分析	103
4.9.1 DPPH自由基清除能力之測定	103
4.9.2 總酚含量測定	104
4.9.3 還原力測定	105
4.9.4綜合結果	106
4.10胞外多醣分析與測定	109
4.10.1 胞外多醣製備方法	109
4.10.2 胞外多醣去蛋白	109
4.10.3 胞外多醣結構分析	111
4.10.4酸水解胞外多醣	115
第五章 結論	118
第六章 參考文獻	119
 
圖目錄
圖3.1 乳化指數計算之示意圖	34
圖3.2  EPS之去蛋白流程圖	40
圖4.1  P. mucilaginosus  TKU032進行NCBI/BLAST比對結果	46
圖4.2  P. mucilaginosus  TKU032 16S rDNA部分鹼基序列	48
圖4.3  發酵液之酸鹼值變化	56
圖4.4 不同碳/氮源類對TKU032產生界面活性劑上清液表面張力之影響	56
圖4.5 不同SPP濃度 於50mL錐型瓶中對TKU032生產生物界面活性劑之表面張力影響	57
圖4.6 不同SPP濃度 於100mL錐型瓶中對TKU032生產生物界面活性劑之表面張力影響	57
圖4.7 不同培養體積對於TKU032生產生物界面活性劑之表面張力探討	58
圖4.8 通氣瓶與錐形瓶(通氣量)影響TKU032生產生物界面活性劑之表面張力探討	58
圖4.9 不同培養溫度對於TKU032生產生物界面活性劑之表面張力探討	59
圖4.10培養基經過滅菌前後之酸鹼值變化	59
圖4.11 滅菌後之酸鹼值影響TKU032生產生物界面活性劑之表面張力探討	60
圖4.12 不同培養天數影響TKU032生產生物界面活性劑之表面張力	60
圖4.13 TKU032培養不同天數影響培養基之酸鹼值變化	62
圖4.14 培養天數影響TKU032細菌生產量	63
圖4.15  純化後之TKU032生產生物界面活性劑MALD-TOF MS光譜圖	66
圖4.16  純化後之TKU032生產生物界面活性劑1H NMR 光譜圖	67
圖4.17  純化後之TKU032生產生物界面活性劑13C NMR光譜圖 	68
圖4.18  純化後之TKU032生產生物界面活性劑LC-MS光譜圖	69
圖 4.19 TKU032所生產生物界面活性劑之純化流程	70
圖4.20 高溫高壓對生物界面活性劑表面張力之影響	74
圖4.21高溫高壓對生物界面活性劑之乳化能力影響	74
圖4.22  市售界面活性劑與TKU032生產之生物界面活性劑經過高溫高壓前後之表面張力比較	75
圖4.23 市售界面活性劑與TKU032生產之生物界面活性劑經過高溫高壓前後之乳化能力比較	75
圖4.24 鹽度對不同界面活性劑與TKU032生產之生物界面活性劑之表面張力影響	77
圖4.25 不同種類之界面活性劑在不同鹽度下之表面張力	77
圖4.26 TKU032生物界面活性劑於不同酸鹼值環境之表面張力	82
圖4.27 TKU032生產生物界面活性劑之臨界微胞濃度	84
圖4.28 SDS界面活性劑之臨界微胞濃度	84
圖4.29 SDS於不同濃度之乳化能力	87
圖4.30 CTAB於不同濃度之乳化能力	87
圖4.31 TKU032生產生物界面活性劑於不同濃度之乳化能力(缺圖) 	88
圖 4.32 TKU032生產生物界面活性劑樣品濃度為5mg/L的乳化能力情形	88
圖4.33  不同培養天數於50毫升培養基對TKU032細菌生長之影響	96
圖4.34  不同培養天數於100毫升培養基對TKU032細菌生長之影	96
圖 4.35 不同培養天數於50毫升培養基對TKU032生長醣類之影響	97
圖 4.36 不同培養天數於100毫升培養基對TKU032生長醣類之影響	97
圖 4.37 不同碳源影響TKU032生產EPS	98
圖4.38  培養體積影響TKU032之EPS生產	98
圖4.39 培養溫度影響TKU032生產EPS	99
圖4.40  烏賊軟骨培養基於滅菌前後酸鹼值變化	99
圖4.41 滅菌前之酸鹼值影響EPS生產	100
圖4.42  TKU032 EPS最適培養時間	100
圖4.43 TKU032上清液對 DPPH自由基清除能力	104
圖4.44 發酵上清液總酚含量之變化與DPPH自由基清除能力關係	105
圖4.45發酵上清液還原力與DPPH自由基清除能力關係	106
圖4.46 胞外多醣分析圖	110
圖4.47 α-澱粉酶水解後之MALDI光譜圖	112
圖4.48發酵液上清液使用乙醇沉澱之多醣進行MALDI光譜	113
圖4.49發酵液上清液使用乙醇沉澱之多醣進行MALDI光譜	114
圖4.50 TKU032胞外多醣之水解能力測量	115
圖4.51酸水解後懸浮液之MALDI光譜(HCl) 	116
圖4.52酸水解後懸浮液之MALDI光譜(Acetic Acid)	117
 
表目錄
表1.1  生物界面活性劑之化學組成及微生物來源分類	3
表2.1 界面活性劑之種類	10
表2.2  微生物及其生產的界面活性劑	14
表2.3 胞外多醣生產菌之生長環境	22
表2.4幾丁質經X-ray繞射雙股螺旋及對稱軸分子的排列方向	23
表4.1  P. mucilaginosus  TKU032 16S rDNA部分鹼基序列比對結果	49
表4.2  P. mucilaginosus  TKU032生物界面活性劑之較適生產條件	61
表4.3 TKU032與TKU029兩菌生產之生物界面活性劑比較	62
表4.4 生物界面活性劑之化學組成及微生物來源分類	72
表4.5 不同界面活性劑之耐鹽度比較	78
表4.6 生物界面活性劑p H穩定範圍比較	81
表4.7生物界面活性劑之臨界微胞濃度比較	85
表4.8 不同界面活性劑之乳化能力比較	89
表4.9 TKU032胞外多醣之較適生產條件 	95
表4.10  不同微生物生產之胞外多醣特徵比較	101 
表4.11  TKU032 於不同天數生產物之比較	107
表4.12 微生物來源之DPPH自由基清除能力比較	108
參考文獻
Abdel-Mawgoud A M ,Mohammad M A, and Haleem H N, 2008, Characterization of surfactin produced by Bacillus subtilis isolations BS5, Biochemistry and Biotechnology,150,298-303
Abu-Ruwaida A S, Banat M, Haditirto, Salem S, Kadri A , 1991, Isolation of biosurfactant producing bacteria product characterization and evaluation. Acta Biotech, 11, 315-24.
Ahimou F, Jacques P, and Deleu M, 2000, Surfactin and iturin A effect on Bacillus subtilis surface hydrophobicity, Enzyme and Microbial Technology, 27,749-754
Amezcua-Vega C, Poggi-Varaldo H M, Esparza- Garcia F, Rios-Leal E , and Rodriguez-Vazquez R,2007,Effect of culture condition on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media, Bioresource Technology,98,237-240
Antonio Mata J, Bejar V, Llamas I, Arias S, Bressollier P, Tallon R, C. Urdaci M, Quesada E, 2006, Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis,Research in Microbiology,157,827-835
Antonio Mata J, Bejar V, Llamas I, Arias S, Bressollier P, Tallon R, C. Urdaci M, Quesada E, 2006, Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis,Research in Microbiology,157,827-835
Arutchelvi J I,Bhaduri S, Uppara P V , DobleM , 2008, Mannosylerythritol lipids:a review, Journal of Industrial Microbiology and Biotechnology,35,1559-1570
B.S. Sobrinho H, D. Rufinob R, M. Luna J,  A. Salgueiro A, M. Campos-Takaki G, F.C. Leitee L, A. Sarubbo L,2008,Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995, Process Biochemistry,43,912-917
Baek K H, Kim H S, Moon S H ,Lee I S ,Oh H M ,and Yoon B D ,2004,Effect of soil types on the biodegradation of crude oil by Nocadia sp. H17-1,Journal of Mocrobiology and  Biotechnology,14,901-905
Banat I M, Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remedation,Fuel and Energy Abstracts, 1995,36,209-298
Bejar V, Llamas I, Calvo C, Quesada E, 1998,Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina, Journal of Biotechnology,61,135-141
Bouchotroch S., Quesada E, Del Moral A, Bejar V,1999,Taxonomic Study of Exopolysaccharide-producing, Moderately Halophilic Bacteria Isolated from Hypersaline Environments in Morocco,Systematic and Applied Microbiology,22,412-419
Chunhong L,  Jinkang C,  Li Z,  Jie Z,  Shengyu L,  2012, Purification and antioxidant activity of a polysaccharide from bulbs of Fritillaria ussuriensis Maxim, International Journal of Biological Macromolecules, 50,1075-1080
Chunhui L, Juan L, Lili L, Yuhong L, Fengshan W, Min X, 2010, Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1, Bioresource Technology,101,(5528-5533)
Deshpande, M.V,1986, Enzymatic degradation of chin & its biological applications,Journal of Scientific&Industrial Research,45,273-281
Dongqin Y,  Yili W, 2013,  Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge, Journal of Environmental Sciences, 25, 155-162
Fengxia L,  Zhaoxin L ,  Xiaomei B,  Zhengying Y,  Yufeng W,  Yaping L,  Yao G, 2010, Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3, Thrombosis Research, 126,e349-e355
Ferdag  C﹐ olak ,  Asim O ,  Necip A ,  Demet Y, 2013, Heavy metal resistances and biosorptive behaviors of Paenibacillus polymyxa : Batch and column studies,  Journal of Industrial and Engineering Chemistry, 19, 863-869
Freitas F, D. Alves V, Pais J, Carvalheira M, Costa N, Oliveira R, A.M. Reis M, 2010,Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol, Process Biochemistry,45,297-305
G. Karanth N,R. Sarath Babu V, Patra, M.S . Thakur S, C. Varadaraj M,2005, Degradation of caffeine by Pseudomonas alcaligenes CFR 1708, Enzyme and Microbial Technology,37,617-624
Georgiou G,Lim S C, and Sharma M M,1992,Surface-active compounds from microorganism,Nature Biotechnology,10,(60-65)
Gerhardt P, Murray R G E , Costilow R N, Wester E W ,1981, Manual of Methods for Ggeneral Bbacteriology,The American Society For Microbiology,NY,USA.
Ghojavanda H, Vahabzadeh F, Roayaei E, Khodabandeh Shahraki A, 2008, Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696), Journal of Colloid and Interface Science,324,172-176
Gitika P,  Jackie A,  Asim K.B,  2006,  Analysis of aggregative  behavior  of  Pseudomonas sp. 30-3 isolated from Antarctic soil,  Soil Biology & Biochemistry, 38, 3152-3157
Gmania A, Kavithaa V, Radhakrishnana N, Suseela R G, Sekaranb G,  B. Mandala A, 2010,  Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals, Colloids and Surfaces B: Biointerfaces,79,334-339
Gudińa EJ, Teixeira JA, Rodrigues LR. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B. 2010;76:298–304. doi: 10.1016/j.colsurfb.2009.11.008.
Hamme JD V, Singh A, P. Ward O, 2006, Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology, Biotechnology Advances,24,604-620
Hossein A, Mohammad H S, Manouchehr H, Mohammad R M,2010,Comparative study of biosurfactant producing bacteria in MEOR applications,Journal of Petroleum Science and Engineering,75,209-214
Ines M, Semia C-E, Dhouha G, 2012, Optimization of the nutritional parameters for enhanced production of Bacillus subtilis SPB1 biosurfactant in submerged culture using response surface methodology, Biotechnology Research International ,8, Article ID 795430
Inoh Y, Dai K, Naohide H, Mamoru N, 2001, Biosurfactants of MEL-a increase gene transfection mediated by cationic liposomes, Biochemical and Biophysical Research Communications,289,57-61
Irulappan Sriram M,  Gayathiri S,  Gnanaselvi U, Stanly Jenifer P, Mohan Raj S, Gurunathan S, 2011,Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation, Bioresource Technology,102,9291-9295
Jun L, Jianguang L, Hong Y, Yi Sun, Z Lu, X Z, 2009, Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3, Carbohydrate Polymers,78,275-281
Kadokura K, Rokutani A,Yamamoto M,Ikegami, T,Sugita H, Itoi  S, Hakamata W,Oku T, NishoT,2007, Purification and characterization of Vibro parahaemolyticus exteracellular chitinase and chitin oligosaccharide deacytylase involved in the production of hetrodisaccharide from chitin. Applied Microbiology and Bioyechnology,75,357-365
Karanth N. G. K., Deo P. G. and Veenanadig N. K., 005,Microbial production of biosurfactants and their importance, Central Food Technological Research Institute,http://eprints.iisc.ernet.in/id/eprint/1543
Knorr D ,1984,Use of chitinous polymers in food-a challenge for food research and development, Food Technology,38,85-97
Lee, S.Y.,Park, S.J.,Park, J.P.,Lee,S. H, 2003,Economic aspects of biopolymer production. Biopolymers,10,307-337
Liu J, Lou J, Ye H, Sun Y, Lu Z, Zeng X, 2009, Production,charactization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3.Carbohydrate Polymers,78,275-281
Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X,2009,Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3, Carbohydrate Polymers,78,275-281
Liua J, Luo J, Ye H, Zeng X, 2012,  Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3, Food and Chemical Toxicology, 50, 767-772
Lyer, A .,Mody, K.,Jha,B  ,2006,Emulsifing properties of a marine bacterial exopolysaccharide,Enzyme and Microbial T echnilogy,38,220-222
M Gonzalez-Domenech C, Martinez-Checa F, Bejar V, Quesada E, 2010, Denitrification as an important taxonomic marker within the genus Halomonas, Systematic and Applied Microbiology,33,85-93
Malin Hultberg, Anna Holmkvist, Beatrix Alsanius,2011,Strategies for administration of biosurfactant-producing pseudomonads for biocontrol in closed hydroponic systems,Crop Protection,30,995-999
Moktan B, Saha J, K. Sarkar P, 2008, Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema,Food Research International,41,586-593
Mulligan CN, Gibbs BF ,1993, Factors influencing the economics of biosurfactant. In: Kosaric, N,. Biosurfactant production,properties and application, 329-371
Najafi A.R., Rahimpour M.R., Jahanmiri A.H., Roostaazad  R., Arabian D., Ghobadi Z., 2010, Biosurfactant Production By Pseudomonas aeruginosa MSIC02 In cashew apply juice using a 24 full factorial experimental design, hem. Eng. J. 163 ,188-194.
Nguyen TA, Do TT, Nguyen TD, Pham LD, Nguyen VD, 2011, Isolation and characteristics of polysaccharide from Amorphophallus corrugatus in Vietnam, Carbohydrate Polymers, 84,64-68
nihon-emulsion Co.,Ltd, Kind of surfactant, http://www.nihonemulsion.co.jp/english/profile/saa3.html
Ozbek H, Saltan Citoğlu G , Dulger H, Uğraş S, Sever B, 2004, Hepatoprotective and anti-inflammatory activities of Ballota glandulosissima,Journal of Ethnopharmacology,95,143-149
Palashpriya D, Soumen M, Ramkrishna S, 2009,  Substrate dependent production of extracellular biosurfactant by a marine bacterium, Bioresource Technology,100,1015-1019
Pavlova K, Grigorova D, 1999,P roduction and properties of exopolysaccharide by Rhodotorula acheniorum MC, Food Research International,32,473-477
Peiqin L, Shiqiong L, Tijiang S, Yan M, Yan L,  Weibo S, Ligang Z, 2012,  Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology, International Journal of Molecular Sciences,5441-5453
Pieretti G, Nicolaus B, Poli A, Michela Corsaro M, Lanzetta R, Parrilli M, 2009, Structural determination of the O-chain polysaccharide from the haloalkaliphilic Halomonas alkaliantarctica bacterium strain CRSS,Carbohydrate Research,344,2051-2055
Poli,A, Kazak.H., Gurleyendag, B.,Tommonaro ,G.,Pieretti ,G.,Oner, E. T.,Nicolaus,B. 2009,High level synthesis of levan by a novel Halomonas species growing on defined media, Carbohydrate Polymers,78,651-657
Pooja S, Swaranjit S C, 2004, Potential applications of microbial surfactants in biomedical sciences, TRENDS in Biotechnology,review paper, 22, 142-146
R. Najafi A,  R. Rahimpoura M,  H. Jahanmiria A, Roostaazadb R, Arabianb D,  Soleimanib M, Jamshidnejada Z, 2011,  Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well, Colloids and Surfaces B: Biointerfaces,82,33-39
R. Neu T, Hartner T, Poralla K,1990, Surface active properties of viscosin: a peptidolipid antibiotic, Applied Microbiology and Biotechnology, 32,518-520
Ron EZ, Rosenberg E., 2001, Natural roles of biosurfactants., Enviroment Microbiology,4,229-236
Ron EZ, Rosenberg E., 2011,Natural roles of biosurfactants., US National Library of Medicine National Institutes of Health,3,229-236
Shavandia M, Mohebali G, Haddadi A, Shakarami H, Nuhi A, 2011, Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6,Colloids and Surfaces B: Biointerfaces, 82, 477-482
Shcherbakova, V.A., Laurinavichius, K.S., Akimenko, V.K., 1999,Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community.Chemosphere, 39,1861-1870
Surekha K.S, Ibrahim M.B , Prashant K.D, Arun G.B , Balu A.C, 2010, Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms, Research review paper, Biotechnology Advances, 28, 438-450
T. More T, Yan S,V. Hoang N, D. Tyagi R,.Y. Surampalli , 2012, Bacterial polymer production using pre-treated sludge as raw material and its flocculation and dewatering potential, Bioresource Technology, 121,425-431
Tamai, Y, Miyatake, K.,Okamoto, Y.,Takamori, Y.,Sakamoto, K., Minami,S.,2003.Enhanced healing of cartilaginous injuries by N-acetyl-D-glucosamine and glucuronic acid,Carbohydrate Polymers,54,251-262
V. Dubey K, N. Charde P, U. Meshram S, P. Shendre L, S. Dubey V, A. Juwarkar A, 2012, Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions, Bioresource Technology,126,368-374
Valko M, Leibfritz D, Moncol J,  T.D. Cronin M,  Mazur M, Telser J, 2007, Free radicals and antioxidants in normal physiological functions and human disease, The International Journal of Biochemistry & Cell Biology,39,44-84
Veronica LC, Claudia EP, Liliana BV, Maria J A, Carlos M A, 2012, Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria, Chemosphere
Wael I ,  Israa S. A-R ,  Abdulmohsen A. A-H ,  Riyad Y. H , Ashraf M. E N,  Mohamed B, 2012,  Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15, International Biodeterioration & Biodegradation,1-11
Wang CL, Huang TH, Liang TW, Fang CY, Wang SL, 2011, Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023,New Biotechnology,28,559-565
Wang SL ,  Liangb YC ,  Liang TW,  2011,  Purification and characterization of a novel alkali-stable-amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic, Process Biochemistry,46,745-750
Wang SL , Peng JH, Liang TW ,  Liu KC , 2008, Purification and characterization of a chitosanase from Serratia marcescens TKU011,Carbohydrate Research,343,1316-1323
Wang SL, Chen TR, Liang TW, Wu PC , 2009, Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials, Biochemical Engineering Journal,48,111-117
Wang SL, Wu PC, Liang TW, 2009, Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment,Carbohydrate Research,344,979-984
Wang SL, Lin CL, Liang TW, Liu KC, Kuo YH, 2009, Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants,Bioresource Technology,100,316-323
Wanga SL, Liou JY,  Liang TW, Liu KC, 2009,Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides,Process Biochemistry,44,854-861
Waseem R,  Kousar M,  Yang W,  Yangchun X,  Shen Q , 2011, Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21, Bioresource Technology,102,6095-6103
Wei YH, Chou CL,  Chang JS, 2005, Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater, Biochemical Engineering Journal,27,146-154
Wingender J, Neu ,T.R., Flemming , H.-C,1999, Microbial extraceller polymeric substance:Chararazation ,structure and function ,ISBN3-540-65720-7
Xu CP, Yun JW,2004,Influence of aeration on the production and the quality of the exopolysaccharides from Paecilomyces tenuipes C240 in a stirred-tank fermenter, Enzyme and Microbial Technology,35,33-39
Yageshni G ,  Mariekie G, 2011, Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation, Minerals Engineering,24,1122-1127
Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, He B, 2009, Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater, Process Biochemistry,44,302-308
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信