淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1807201113231200
中文論文名稱 輕型運動載具起落架之材料與外形負載分析
英文論文名稱 Loading Effect of Material and Shape on The Light-Sport Aircraft Landing Gear
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 游宗憲
研究生英文姓名 Tsung-Hsign Yu
學號 698430468
學位類別 碩士
語文別 中文
口試日期 2011-06-10
論文頁數 105頁
口試委員 指導教授-陳步偉
委員-沈坤耀
委員-張永康
中文關鍵字 輕航機  有限元素法  起落架  複合材料  外形 
英文關鍵字 light-sport aircraft  finite element  landing gear  composites  shape 
學科別分類 學科別應用科學航空太空
中文摘要 隨著商用客機之材料發展,輕航機市場也開始重視複合材料之製造。目前美國輕航機市場經法規S-LSA(Special Light-Sport Aircraft)所規範之機種中,已有53%之輕航機使用複合材料,這意味著複合材料已成為輕航機製造之主流材料。
本文目的是使用有限元素軟體ANSYS、LS-DYNA、HyperMesh,進行不同材料、不同負載、不同外形、不同速度下,輕航機主起落架靜態、動態模擬之力學模擬分析。材料主要是鋁合金6061-T6、玻璃纖維和碳纖維複合材料;外形有平板、圓柱和圓管外形起落架進行更換;負載則是考慮輕航機CH701設計之最大降落重量450Kg與FAA Part1規定之600Kg兩種,於動態模擬中降落速度分別以降落角度3°時垂直向下速度1m/s 與5°時垂直向下速度1.57 m/s。
由本研究結果中可知玻璃纖維圓柱起落架較佳,與CH701輕航機基本的鋁合金平板起落架比較,玻璃纖維圓柱起落架重量較輕,減輕8%的重量,靜態、動態方面應力應變也較小,靜態應力減少37%、應變減少47%,動態應力減少1%、應變減少41%,其靜、動態應力佔不到玻璃纖維最大應力值的6% 遠小於鋁合金與碳纖維,因此整體狀況玻璃纖維圓柱起落架為所有組合中之較佳選擇。
英文摘要 As the material development of commercial aircraft, light sport aircraft markets are starting to focus on useing composite materials.The U.S. light sport aircraft market by regulatory S-LSA (Special Light-Sport Aircraft) are standard models in 53% of the light sport aircraft to use composite materials, which means that composite materials have become the mainstream of light sport aircraft manufacturing materials.
The purpose of this research is use ANSYS, LS-DYNA, HyperMesh to analysis the different materials,different loads,different shape,different speeds of the light sport aircraft main landing gears static and dynamic simulation. Materials are aluminum alloy 6061-T6,S-Glass fiber composite and Std CF Fabric composite materials.Landing gear are leaf and cylindrical and tube shapes to replace.Two loads are considered the design of CH701 maximum landing weight 450Kg and FAA Part1 600Kg.The dynamic simulation of landing speed are 1m/s and 1.57m/s。
Results from this study shows that the S-Glass fiber cylindrical landing gear is better, compare with CH701 light aircraft main landing gear, glass fiber cylindrical landing gear decrease 8% weight than CH701 light aircraft main landing gear.The static result shows that S-Glass fiber cylindrical landing gear stress decrease 37%, strain decease 47% and in the dynamic result stress decrease 1%, strain decease 41%.The static and dynamic stress accounted for 6% of maximum stress of glass fiber, it is less than aluminum and carbon fiber, so S-Glass fiber cylindrical landing gear is the better choice of all kinds of landing gears.
論文目次 目錄
摘要..............................................................................................................................I
目錄...........................................................................................................................III
圖目錄.......................................................................................................................V
表目錄.......................................................................................................................X
第1章、緒論...........................................................................................................1
1.1前言....................................................................................................................1
1.2起落架材料之使用發展....................................................................................4
1.3 輕航機起落架之市場使用趨勢.......................................................................7
1.4 研究目的及方法...............................................................................................9
第2章、文獻回顧..............................................................................................12
2.1相關研究..........................................................................................................12
2.2法規..................................................................................................................16
2.2.1金屬材料法規...........................................................................................16
2.2.2複合材料法規...........................................................................................20
2.2.3 輕航機法規..............................................................................................24
2.3有限元素法....................................................................................................27
第3章、實驗設計..............................................................................................29
3.1 實驗流程.......................................................................................................29
3.2 模型建立.......................................................................................................31
3.3 邊界條件.......................................................................................................33
3.3.1 材料參數..............................................................................................33

3.3.2 負載條件............................................................................................34
3.3.3 動態模擬之下降速度..........................................................................35
3.4 靜態模擬.......................................................................................................36
3.4.1 靜態模擬設定......................................................................................36
3.4.2 靜態負載分析......................................................................................38
3.4.2.1 鋁合金6061-T6 起落架..............................................................38
3.4.2.2 S-Glass fiber composite起落架.....................................................46
3.4.2.3 Carbon/Vinyl Ester Composite起落架..........................................54
3.4.3 靜態模擬結果......................................................................................62
3.5 動態模擬.......................................................................................................67
3.5.1 動態模擬設定........................................................................................67
3.5.2 動態負載分析........................................................................................76
3.5.2.1 鋁合金6061-T6 起落架...............................................................76
3.5.2.2 S-Glass fiber composite起落架.....................................................80
3.5.2.3 Carbon/Vinyl Ester Composite起落架..........................................83
3.6 動態模擬結果...........................................................................................86
第4章、結論.........................................................................................................91
參考文獻...............................................................................................................93
附錄 論文簡版..................................................................................................98





圖目錄
圖 1-1 Airbus飛機使用複合材料的比率……………………………………….3
圖 1-2 波音公司飛機使用複合材料之情況.……………………………………3
圖 1-3 NH90直升機起落架的trailing arm……………………………...………6
圖 1-4 NH90直升機起落架的torque link………………………………………6
圖 1-5 本研究流程圖…………………………………………………...………11
圖 2-1 各機構複合材料法規的相關性………………………………...………18
圖 3-1 本研究詳細程式流程圖………………………………………...………30
圖 3-2 預計探討之各種起落架之模型………………………………...………31
圖 3-3 CH701 起落架草圖…………………………………..………...………32
圖 3-4 簡化後3D之起落架圖……………………………...…………...………32
圖 3-5 起落架之平板外形、圓柱外形、圓管外形截面尺寸………...…………33
圖 3-6 平板起落架完成mesh圖.........................................................................36
圖 3-7 圓柱起落架完成mesh圖............................. ...........................................37
圖 3-8 圓管起落架完成mesh圖.........................................................................37
圖 3-9 鋁合金6061-T6平板起落架受450Kg負載應力分布圖........................38
圖 3-10 鋁合金6061-T6平板起落架受450Kg負載應變分布圖........................39
圖 3-11 鋁合金6061-T6平板起落架受450Kg負載Y軸變形量分布................39
圖 3-12 鋁合金6061-T6平板起落架受600Kg負載應力分布圖........................39
圖 3-13 鋁合金6061-T6平板起落架受600Kg負載應變分布圖........................40
圖 3-14 鋁合金6061-T6平板起落架受600Kg負載Y軸變形量分布................40
圖 3-15 鋁合金6061-T6圓柱起落架受450Kg負載應力分布圖..........................41
圖 3-16 鋁合金6061-T6圓柱起落架受450Kg負載應變分布圖..........................41
圖 3-17 鋁合金6061-T6圓柱起落架受450Kg負載Y軸變形量分布...................42

圖 3-18 鋁合金6061-T6圓柱起落架受600Kg負載應力分布圖..........................42
圖 3-19 鋁合金6061-T6圓柱起落架受600Kg負載應變分布圖..........................42
圖 3-20 鋁合金6061-T6圓柱起落架受600Kg負載Y軸變形量分布................43
圖 3-21 鋁合金6061-T6圓管起落架受450Kg負載應力分布圖..........................44
圖 3-22 鋁合金6061-T6圓管起落架受450Kg負載應變分布圖..........................44
圖 3-23 鋁合金6061-T6圓管起落架受450Kg負載Y軸變形量分布................44
圖 3-24 鋁合金6061-T6圓管起落架受600Kg負載應力分布圖..........................45
圖 3-25 鋁合金6061-T6圓管起落架受600Kg負載應變分布圖..........................45
圖 3-26 鋁合金6061-T6圓管起落架受600Kg負載Y軸變形量分布................45
圖 3-27 複合材料平板起落架受450Kg負載應力分布圖...................................46
圖 3-28 複合材料平板起落架受450Kg負載應變分布圖...................................47
圖 3-29 複合材料平板起落架受450Kg負載Y軸變形量分布...........................47
圖 3-30 複合材料平板起落架受600Kg負載應力分布圖....................................47
圖 3-31 複合材料平板起落架受600Kg負載應變分布圖...................................48
圖 3-32 複合材料平板起落架受600Kg負載Y軸變形量分布...........................48
圖 3-33 複合材料圓柱起落架受450Kg負載應力分布圖...................................49
圖 3-34 複合材料圓柱起落架受450Kg負載應變分布圖....................................49
圖 3-35 複合材料圓柱起落架受450Kg負載Y軸變形量分布...........................50
圖 3-36 複合材料圓柱起落架受600Kg負載應力分布圖....................................50
圖 3-37 複合材料圓柱起落架受600Kg負載應變分布圖...................................50
圖 3-38 複合材料圓柱起落架受600Kg負載Y軸變形量分布...........................51
圖 3-39 複合材料圓管起落架受450Kg負載應力分布圖...................................52
圖 3-40 複合材料圓管起落架受450Kg負載應變分布圖...................................52
圖 3-41 複合材料圓管起落架受450Kg負載Y軸變形量分布...........................52
圖 3-42 複合材料圓管起落架受600Kg負載應力分布圖....................................53

圖 3-43 複合材料圓管起落架受600Kg負載應變分布圖...................................53
圖 3-44 複合材料圓管起落架受600Kg負載Y軸變形量分布...........................53
圖 3-45 複合材料平板起落架受450Kg負載應力分布圖....................................54
圖 3-46 複合材料平板起落架受450Kg負載應變分布圖....................................55
圖 3-47 複合材料平板起落架受450Kg負載Y軸變形量分布...........................55
圖 3-48 複合材料平板起落架受600Kg負載應力分布圖...................................55
圖 3-49 複合材料平板起落架受600Kg負載應變分布圖...................................56
圖 3-50 複合材料平板起落架受600Kg負載Y軸變形量分布...........................56
圖 3-51 複合材料圓柱起落架受450Kg負載應力分布圖...................................57
圖 3-52 複合材料圓柱起落架受450Kg負載應變分布圖....................................57
圖 3-53 複合材料圓柱起落架受450Kg負載Y軸變形量分布...........................58
圖 3-54 複合材料圓柱起落架受600Kg負載應力分布圖...................................58
圖 3-55 複合材料圓柱起落架受600Kg負載應變分布圖...................................58
圖 3-56 複合材料圓柱起落架受600Kg負載Y軸變形量分布...........................59
圖 3-57 複合材料圓管起落架受450Kg負載應力分布圖...................................60
圖 3-58 複合材料圓管起落架受450Kg負載應變分布圖...................................60
圖 3-59 複合材料圓管起落架受450Kg負載Y軸變形量分布...........................60
圖 3-60 複合材料圓管起落架受600Kg負載應力分布圖...................................61
圖 3-61 複合材料圓管起落架受600Kg負載應變分布圖...................................61
圖 3-62 複合材料圓管起落架受600Kg負載Y軸變形量分布...........................61
圖 3-63 鋁合金與複合材料之平板、圓柱和圓管起落架靜態負載比較.............64
圖 3-64 碳纖維剪力模量於不同形狀起落架受450Kg負載之應力趨勢............65
圖 3-65 平板起落架動態模擬環境圖...................................................................68
圖 3-66 圓柱起落架動態模擬環境圖...................................................................68
圖 3-67 圓管起落架動態模擬環境圖...................................................................69

圖 3-68 鋁合金平板起落架沙漏形變能與內能比較圖.......................................70
圖 3-69 鋁合金平板起落架滑動能變化圖...........................................................70
圖 3-70 鋁合金圓柱起落架沙漏形變能與內能比較圖………………………...71
圖 3-71 鋁合金圓柱起落架滑動能變化圖...........................................................71
圖 3-72 鋁合金圓管起落架沙漏形變能與內能比較圖……………………...…71
圖 3-73 鋁合金圓管起落架滑動能變化圖...........................................................72
圖 3-74 S-Glass fiber平板起落架沙漏形變能與內能比較圖……………….…72
圖 3-75 S-Glass fiber平板起落架滑動能變圖.....................................................72
圖 3-76 S-Glass fiber圓柱起落架沙漏形變能與內能比較圖…………….……73
圖 3-77 S-Glass fiber圓柱起落架滑動能變化圖.................................................73
圖 3-78 S-Glass fiber圓管起落架沙漏形變能與內能比較圖……………….…73
圖 3-79 S-Glass fiber圓管起落架滑動能變化圖.................................................74
圖 3-80 Std CF Fabric平板起落架沙漏形變能與內能比較圖…………………74
圖 3-81 Std CF Fabric平板起落架滑動能變化圖................................................74
圖 3-82 Std CF Fabric圓柱起落架沙漏形變能與內能比較圖…………………75
圖 3-83 Std CF Fabric圓柱起落架滑動能變化圖................................................75
圖 3-84 Std CF Fabric圓管起落架沙漏形變能與內能比較圖…………………75
圖 3-85 Std CF Fabric圓管起落架滑動能變化圖................................................76
圖 3-86 6061-T6平板起落架負載450 kg 之動能、位能變化圖..........................77
圖 3-87 6061-T6平板起落架負載450 kg 撞擊應力分布圖................................77
圖 3-88 6061-T6圓柱起落架負載450 kg 之動能、位能變化圖..........................78
圖 3-89 6061-T6圓柱起落架負載450 kg 撞擊應力分布圖................................78
圖 3-90 6061-T6圓管起落架負載450 kg 之動能、位能變化圖..........................79
圖 3-91 6061-T6圓管起落架負載450 kg 撞擊應力分布圖................................79
圖 3-92 S-Glass fiber平板起落架負載450 kg 之動能、位能變化圖...................80

圖 3-93 S-Glass fiber平板起落架負載450 kg撞擊應力分布圖...........................80
圖 3-94 S-Glass fiber圓柱起落架負載450 kg 之動能、位能變化圖...................81
圖 3-95 S-Glass fiber圓柱起落架負載450 kg撞擊應力分布圖...........................81
圖 3-96 S-Glass fiber圓管起落架負載450 kg 之動能、位能變化圖...................82
圖 3-97 S-Glass fiber圓管起落架負載450 kg撞擊應力分布圖...........................82
圖 3-98 Std CF Fabric 平板起落架負載450 kg 之動能、位能變化圖...............83
圖 3-99 Std CF Fabric 平板起落架負載450 kg撞擊應力分布圖.......................84
圖 3-100 Std CF Fabric 圓柱起落架負載450 kg 之動能、位能變化..............84
圖 3-101 Std CF Fabric 圓柱起落架負載450 kg撞擊應力分布圖..................85
圖 3-102 Std CF Fabric 圓管起落架負載450 kg 之動能、位能變化圖.............85
圖 3-103 Std CF Fabric 圓管起落架負載450 kg撞擊應力分布圖.....................86
圖 3-104 鋁合金與複合材料之平板、圓柱和圓管起落架動態負載比較...........88













表目錄
表 1-1 區間客機使用複合材料之情況及選材特點……………………….……4
表 1-2 不同航空常用材料之比較……..………………………………...………5
表 1-3 S-LSA輕航機之材料與起落架形狀統計……………….…….…...……8
表 2-1 金屬材料法規整理………………..................……….…………………19
表 2-2 FAA 、CAR、 EASA法規比較…..……….………………………….…26
表 3-1 本研究之鋁合金與複合材料之材料參數………………………….…33
表 3-2 本研究S-Glass fiber composite 材料參數…..……………….……...…34
表 3-3 本研究Carbon/Epoxy Composite Sheet 材料參數..……….……..……34
表 3-4 本研究使用之機身負載………..……………………..……...…………34
表 3-5 鋁合金與複合材料起落架之靜態負載模擬……..……...……………..66
表 3-6 鋁合金與複合材料下降速度1m/s之動態模擬………………..….…...89
表 3-7 鋁合金與複合材料下降速度之1.5 m/s之動態模擬………….….……90
參考文獻 文獻參考
[1] SOLAR IMPULSE - AROUND THE WORLD IN A SOLARAIRPLANE,
http://www.solarimpulse.com/.
[2] ITIA國際航空運輸協會,”航太碳纖維國際合作”,2009年7月,http://www.iata.org/Pages/default.aspx.
[3] Markus Kaufmann, ”Cost/Weight Optimization of Aircraft Structures”, Licentiate Thesis Stockholm ,2008.
[4] Charles E. Harris, Mark J. Shuart, ”An Assessment of The State- of-The-Art in The Design and Manufacturing of Large Composite Structure for Aerospace Vehicles”, National Aeronautics and Space Administration.
[5] Dan Zenkert, “Department of Aeronautical and Vehicle Engineering Division of
Lightweight Structures”.
http://www.nordic-composite.com/admin/common/getimg.asp?FileID=1116.
[6] ” 複合材料與飛機結構”,空軍航空技術學院飛機系論文,2006-07-28.
[7] http://en.wikipedia.org/wiki/Specific_strength.
[8] H.G.S.J. Thuis, ”The Development of composite landing gear components for aerospace applications”, National Aerospace Laboratory NLR, 2004.
[9] Mr.T.Staassen, “Metal Matrix Composite Landing Gear Component”, SP Aerospace Aerospace and vehicle systems Geldrop, June,2003.
[10]http://www.jeccomposites.com/composites-news/7388/composites-
aeronautics.html.
[11]Sara Black, “Flying high on composite wings”, Composites World Expo, May, 2008.
[12] Flying Machines s.r.o., http://www.flyingmachines.cz/_english/fm250/.
[13] Special Light-Sport Aircraft, http://www.sportpilot.org/learn/slsa/.
[14] ”Material Wealth”, AeroStrategy Commentary, 2006.
[15] Wurzba,R.and Tréz,M.P,”A Landing Gear FEM Analysis Using MSC Patran/Nastran”, ELEB Equipamentos Ltda.
[16] Ing. Martin Plhal, Ph.D, “Nonlinear Static Analysis of Landing Gear According to FAR/JAR 23 regulation” Czech Republic.
[17] Derek Morrison, Gregory Neff and Mohammad Zahraee, “Aircraft Landing Gear Simulation and Analysis”, McNair Summer Undergraduate Research Internship, 1995.
[18] W. Krason, J. Malachowski, ”Effort analysis of the landing gear with possible flow during touchdown”, International Journal of Mechanics, Vol 2, 2008.
[19] 陳建銘,”輕型運動載具起落架關鍵附載分析”,淡江大學航空太空工程學系
碩士論文,2008年6月.
[20] Giangiacomo Minak, Daniele Ghelli, Riccardo Panciroli,Andrea Zucchelli,
”Composite tube behavior under low velocity impact “, Università di Bologna, Mechanical Engineering Department DIEM, Bologna, 2009.
[21] Haeng-Ki Lee, Srdan Simunovic “Constitutive Modeling and Impact Simulation
of Random Carbon Fiber Polymer Matrix Composites for Automotive Applications” , Society of Automotive Engineers, Inc,1998.
[22] Ramin Hosseinzadeh, Mahmood Mehrdad Shokrieh, Larry Lessard, “Damage
behavior of fiber reinforced composite plates subjected to drop weight impacts”, Sharif University of Technology,Canada, 2006.
[23] Mahmood M.Shokrieh,Davood Rezaei,“Analysis and optimization of a composite leaf spring”, Composite Structures, pp. 317–325, Vol. 60, 2003.
[24] Amit Goyal, “Light Aircraft Main Landing Gear Design and Development”,
M.S.Ramaiah, School of Advanced Studies, INDIA, 2002.
[25] 林永崑、柯著成、邱勇智、張傳正、陳育德,”弓形複材起落腳架結構之
研製”,強塑複材,pp. 80-88,Vol. 102-103, 2005。
[26] 簡銘熹,”輕型運動載具複合材料主起落架負載分析”,淡江大學航空太空工
程學系碩士論文,2010年1月
[27] Li Qing-fen, Liu Yan-jie, Wang Hai-dou, Yan Sheng-yuan, “Finite Element
Analysis and Shape Optimization of Automotive Crash-box Subjected to Low
Velocity Impact”, International Conference on Measuring Technology and
Mechatronics Automation, 2009.
[28] Joseph F. Rakow, Alfred M. Pettinger, ”Failure Analysis of Composite
Structures in Aircraft Accidents”, ISASI 2006 Annual Air Safety Seminar, 11,
2006.
[29] FAR 23.603,
http://rgl.faa.gov/Regulatory_and_Guidance_Library%5CrgFAR.nsf/0/8182F063273E8BC185256687006DC6BE?OpenDocument.
[30] FAR 23.613,
http://rgl.faa.gov/Regulatory_and_Guidance_Library%5CrgFAR.nsf/0/8182F063273E8BC185256687006DC6BE?OpenDocument.
[31]“Fatige, Fail-Safe, and Damage Tolerance Evaluation of Metallic Structure for Nomal, Utility, Acrobatic, and Commuter Category Airplanes”. AC 23-13A, Federal Aviation Administration. 9, 2005.
[32]“Metallic Materials Properties Development and Standardization”, MMPDS, Federal Aviation Administration, 2, 2003.
[33]“Metallic Materlals and Elements for Aerospace Vehicle Structures”, MIL-HDBK-5H, U.S. Department of Defense, 1998.
[34] “Metallic Materlals and Elements for Aerospace Vehicle Structures”, MIL-HDBK-5J, U.S. Department of Defense, 2003.
[35]Aluminum vs Composite Construction,
http://www.meyersaircraft.com/Common/Aluminum%20vs%20Composite%20Co
nstruction.html.
[36] NTSB, http://www.ntsb.gov/events/2001/AA587/default.htm.
[37] ”Composite Aircraft Structure”, AC 20-107A, Federal Aviation Administration, 1984.
[38] “Composite Aircraft Structure”, 20-107B, Federal Aviation Administration, 2009.
[39] FAR Part 1 General definitions, http://www.faa.gov/.
[40] FAR 103, http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=84488688d7c8e73f68d475c470de90c3&rgn=div5&view=text&node=14:2.0.1.3.16&idno=14.
[41]CAR Subpart 101.01, http://www.tc.gc.ca/eng/civilaviation/regserv/cars/part1-subpart1-1104.htm
[42] ”Design and Performance Standards for a Advanced Ultra-Light Aircraft”, Light Aircraft Manufacturers Association of Canada L.A.M.A.C. 2004.
[43] Basic Ultra-light Aeroplanes,
http://www.tc.gc.ca/civilaviation/general/recavi/Ultralight/ULTransitionStrategy/
basic.htm.
[44]”Certification Specifications for Very Light Aeroplanes”, European Aviation Safety Agency, 2003.
[45] 吳宏振,「T 形管件液壓成形之自適性模擬」,國立中山大學機械與機電工
程學系碩士論文,民國92年6月.
[46] Zenith Aircraft Company,http://www.zenithair.com/.
[47] MatWeb, http://www.matweb.com/.
[48]Performance Composite Ltd,http://www.performance-composites.com/carbonfibre/mechanicalproperties_2.asp

[49] Cezch Aircraft works, ”Flight Manual ZENAIR STOL CH 701”,Cezch Republic edition 3 , 1999.
[50] “Design and Performance of Light Sport Airplane”, F2245-07, ASTM, 2008.
[51] Michael S Nolan, ” Fundamentals of Air Traffic Control”, Cengage, 2004.
[52]"LS-DYNA+HyperMesh 訓練教材" 勢流科技股份有限公司,2008。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信