淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1807200816350400
中文論文名稱 以二階段培養模式培養小球藻(Chlorella sp.)生產油脂之研究
英文論文名稱 Studies on lipid production from microalgae using two-step cultivation strategy
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 吳欣慧
研究生英文姓名 Hsin-Hui Wu
電子信箱 s13462000@yahoo.com.tw
學號 695480276
學位類別 碩士
語文別 中文
口試日期 2008-06-14
論文頁數 91頁
口試委員 指導教授-高思懷
共同指導教授-李柏青
委員-曾四恭
委員-徐錠基
委員-黃穰
中文關鍵字 生質能源  微藻  脂質  油脂  二階段培養 
英文關鍵字 biodiesel  microalgae  lipid  lipid content  two-step cultivation 
學科別分類 學科別應用科學環境工程
中文摘要 地球能源隨著國際經濟的熱絡而有耗竭的現象,因此尋找替代能源成為迫切且緊要的事情。生質能源當中微藻是非常好的生產者,其光合效率特別高,生物質量與生長速率均優於其它能源作物 (Dote et al., 1994;Minowa et al., 1995)。在微藻種類裡,小球藻(Chlorella sp.)擁有高蛋白質含量以及高脂質累積量的潛能(Becker, 1994)並且取得容易,所以本研究以此為探討對象。
為了要讓細胞生物質量生產出高的柴油量,必須要先得到細胞內高的脂質含量與油脂量(Mutsumi et al., 2006),本研究先以 Chlorella sp.於不同濃度CO2的自營性培養做探討,再以不同C/N比濃度的異營性培養為基礎,了解自營與異營培養之間的差異,接著透過異營與類自營二階段式的培養提高Chlorella sp.細胞胞內脂質含量和總油脂量。
實驗結果顯示,自營培養環境下,20% CO2的培養有最高的總油脂量與胞內脂含量,分別為0.45 gL-1與70%,生長速率為0.0242 day-1(培養1-12天之間)。而在異營培養實驗,C/N比為7或14對最大油脂量與胞內脂質含量影響不明顯,甚至對生物質量也是如此,分別為0.4 gL-1、20%和1.5 gL-1,生長速率為2.1 day-1(培養24-44小時間)。在異營結合類自營性二階段培養實驗結果,顯示此模式最大總油脂量增為初始值的3.25倍,明顯優於異營性培養(C/N比為7)之最大增加量為初始值的2倍,自營性培養則為原始的1.5倍。
英文摘要 The global fossil fuel consumption is demanding and supposed to be used up by A.D. 2050(Ginzburg, 1993) while economy and population are continuously growing. Substitution of the energy resources have been researched for decades including the wind-powered energy, solar energy and the production of biodiesel mainly by agricultural activities. The microalgae have been suggested as one of a good resource of bio-fuel production due to its higher photosynthesis efficiency, higher biomass production and higher growth rate comparing to other energy crops such as the sugar cane, beet and corn…etc. (Dote et al.,1994; Minowa et al., 1995).The objective of the research is to increase the lipid content of Chlorella sp., a kind of microalgae, by two-step (heterotrophic and stressed pseudo-autotrophic) cultivation strategy.
The results of the autotrophic cultivation by applying two different concentrations of CO2 (0, 3%, 20%) come out that the maximum lipid production and lipid content in 20% CO2 culture, 0.45 gL-1 and 70% respectively.
The result of the heterotrophic cultivation by applying two different carbon-to-nitrogen ratios (C/N = 7, 14) of nutrients come out that both the C/N = 7 and C/N = 14 have the maximum lipid production, lipid content and biomass production, which are 0.4 gL-1,20% and 1.5 gL-1 respectively.
The results of the two-step cultivation by combining the nutrients of carbon-to-nitrogen ratios (C/N = 7) with CO2 (20%) come out that the lipid production and lipid content have the maximum ratio, which are 3.25 and 1.6 respectively. The lipid production and lipid content of the two-step cultivation are better then heterotrophic or autotrophic cultivation alone evidently.
論文目次 目錄.....................................................I
圖目錄 ................................................V
表目錄 ..............................................VII
第一章 前言.............................................1
1.1 緣起.................................................1
1.2 研究目的.............................................3
第二章 文獻回顧.........................................4
2.1 藻類的介紹...........................................4
2.2 小球藻(Chlorella sp.)................................4
2.3 小球藻(Chlorella sp.)的生殖方式......................7
2.4 光合作用.............................................8
2.5 藻類形成脂質的過程..................................12
2.6 影響藻類生長因子....................................14
2.6.1 CO2的影響.........................................14
2.6.2 氮的影響..........................................15
2.6.3 光照強度和週期的影響..............................16
2.6.4 溫度的影響........................................18
2.6.5 異營性培養之結果..................................19
2.6.6 環境衝擊的影響....................................19
2.7 脂質轉換成生化柴油之過程............................20
2.8 生質燃料的優缺點....................................23
2.9 國內外發展概況 ......................................25
2.9.1 目前國內生質柴油發展狀況..........................25
2.9.2 國外生質柴油發展狀況..............................25
第三章 材料與方法......................................29
3.1 藻種來源............................................29
3.2 培養基..............................................29
3.3 實驗流程(Fig. 3-1)..................................30
3.4 實驗方法............................................34
3.4.1 Chlorella sp. 於不同CO2濃度環境下培養實驗.........34
3.4.2主要培養基碳氮成分濃度比實驗(C/N比)................34
3.4.3 二階段培養模式實驗(異營結合類自營行培養)..........35
3.5 分析方法............................................36
3.5.1 藻體生長濃度(OD值)的測定..........................36
3.5.2 藻體油脂含量測定..................................36
3.5.3 細胞生物質量與硝酸鹽濃度的測量....................36
3.5.4 藻類生長速率計....................................37
3.5.5 葡萄糖濃度的測定..................................37
3.5.6 光照強度測定......................................37
3.5.7 實驗數據比例值之算法..............................37
3.5.8 實驗設備..........................................38
第四章 結果與討論......................................40
4.1 Chlorella sp.長期自營培養的實驗結果.................40
4.2 自營性空白實驗的實驗結果............................42
4.3 異營性結合類自營性培養之二階段培養模式結果..........44
4.3.1 異營性結合類自營性培養對細胞生長的影響............44
4.3.2 異營性結合類自營性培養對油脂量的影響..............47
4. 4 Chlorella sp.培養在不同濃度CO2的實驗結果...........51
4.4.1 Chlorella sp.在不同CO2濃度下的自營生長情況........51
4.4.2 CO2濃度對藻類油脂含量的影響.......................59
4.5 Chlorella sp.培養於不同C/N比的實驗結果..............64
4.5.1 不同C/N比對細胞生長的影響.........................64
4.5.2 不同C/N比培養對油脂量變化的影響...................67
4.6 微藻的自營性異營性培養之差異........................71
4.7 樣品存儲溫度對實驗的影響............................77
第五章 結論與建議.......................................81
5.1 結論................................................81
5.2 建議................................................82
第六章 參考文獻.........................................83
圖目錄
Fig. 2-1 The cell of Chlorella sp. ....................5
Fig. 2-2 The growth of Chlorella sp. .............8
Fig. 2-4 The pathway of dark reaction via photosynthesis. ................................................10
Fig. 2-5 The lipid which is composed of fatty acid and glycerin. ................................................12
Fig. 2-7 Transesterification of triglycerides with alcotjol. ................................................21
Fig. 2-8 The transesterification reactions of vegetable oil with alcohol to esters and glycerol. ............21
Fig. 2-9 The mechanism of alkali-catalyzed transesterification of triglycerides with alcohol ..22
Fig. 4-1 Variations of OD660 in long term (50 days) batch culture. ................................................41
Fig. 4-2 Variation of OD660、biomass、lipid and lipid content within autotrophic cultured system. ............43
Fig. 4-3 Effect of different culture on (A) biomass and (B)growth rate of biomass. ..............................46
Fig. 4-4 Effect of different culture on (A) lipidt and (B)growth rate of lipid. .............................49
Fig. 4-5 Effect of different culture on (A) lipid content and (B)growth rate of lipid content. ....................50
Fig. 4-6 The effects of variable CO2 concentration on (A)number of cells (B)growth rate of cell numbers. ..53
Fig. 4-7 Effect of variable CO2 concentration on (A)OD660 (B)growth rate of OD660. .............................56
Fig. 4-8 Effect of variable CO2 concentration on (A)biomass (B)growth rate of biomass. .....................57
Fig.4-9 Photomicrograph of Chlorella sp. under variable CO2 concentraiton. .......................................58
Fig. 4-10 Effect of variable CO2 concentration on (A)lipid content (B)growth rate of lipid content. ...........62
Fig. 4-11 Effect of variable CO2 concentration on (A)lipid (B)growth rate of lipid. ..............................63
Fig. 4-12 Effect of variable C/N ratio on OD660. ..66
Fig. 4-13 Effect of variable C/N ratio on biomass. ..66
Fig. 4-14 Effect of variable C/N ratio on lipid. ..69
Fig. 4-15 Effect of variable C/N ratio on lipid content. ................................................70
Fig. 4-16 Effect of variable C/N ratio on NO3-N concentration. .......................................70
Fig. 4-17 Photograph of the autotrophic cultivation of Chlorella sp. (A)apperance of sample (B) microscopy (400X) ................................................73
Fig. 4-18 Photograph of the heterotrophic cultivation of Chlorella sp. (A)apperance of sample (B) microscopy (400X) ...............................................73
Fig. 4-19 Variation of biomass in heterotrophic and autotrophic cultured system. ...................74
Fig. 4-20 Variation of GRbiomass in heterotrophic and autotrophic cultured system. ...................74
Fig. 4-21 Variation of GRlipid in heterotrophic and autotrophic cultured system. ...................75
Fig. 4-22 Variation of lipid content in heterotrophic and autotrophic cultured system. ....................75
Fig. 4-23 Variation of GRlipid content in heterotrophic and autotrophic cultured system. ....................76
Fig. 4-24 Effect of blank culture stored in refrigerator on biomass. .....................................78
Fig. 4-25 Effect of blank culture stored in refrigerator on lipid. ..............................................79
Fig. 4-26 Effect of blank culture stored in refrigerator on lipid content. .....................................79
Fig. 4-27 Effect of blank culture stored in refrigerator on lipid content. .....................................80
表目錄
Table 2-1藻類產品的商業應用 .............................6
Table 2-2 光合作用反應簡表 .............................11
Table 2-3國外生質柴油發展目標與現況 ...................28
Table 3-1 培養基成分表 ............................38
Table 3-2 實驗儀器設備表 ............................39
Table 4-1 Chlorella sp.經過儲存後的胞內脂質含量 ..80

參考文獻 Antolin, G., Tinaut, F.V., Briceno, Y., Castano, V., Perez, C.,Ramirez, A.I.( 2002)” Optimisation of biodiesel production by sunflower oil transesterification.” Bioresour. Technol., 83, 111–114.
Becker, E.W.(1986) “Handbook of microalgal mass culture.(Edited by A. Richmond)” CRC Press Inc., Florida, USA, 330-419.
Ben-Amozt, A., Tornabene, T.G.(1985) “Chemical profile of selected species of microalgae with emphasis on lipid.” J. Phycol., 21, 77–81.
Borowitzka, M.A. (1988) “Vitamins and fine chemicals from microalga.” In Microalgal biotechnology. Cambridge, UK: Cambridge University Press; 153-196.
Carvalho, A.P., Malcata, F.X. (2005) “Optimization of omega-3 fatty acid production by microalgae: Crossover effects of CO2 and light intensity under batch and continuous cultivation modes.” Mar. Biotechnol., 7(4), 381-388.
Chen, F., Johns, M.R.(1991) “Effect of C:N ratio and aeration on fatty acid composition of heterotrophic Chlorella sorokiniana.” Journal of Applied Phycology, 3, 203–209.
Davis, E.A., Dedrick, J., French, C.S.(1953) “Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of Plant Biology.” In: Burlew JS, editor. Algal culture: from laboratory to pilot plant. Washington DC: The Kirby Lithographic Company, 85–102.
Davison, I.R., Reed, R.H. (1985) “The physiological significance of mannito compatible cytoplasmic solute.” Phycologia., 24, 449-457.

Demirbas A.(2007) “Importance og biodiesel as transportation fuel.” Energy policy, 35, 4661-4670.
Dieter Hess (1984) “植物生理學”三明書局印行。
Dote, Y., Sawayama, S., Inoue, S., Minowa, T., Yokoyama, S.(1994) “Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction.” Fuel, 73, 1855–1857.
Eckey, E.W. (1956) “Esterification and interesterification.” JAOCS, 33, 575-579.
Feng, F.Y., Yang, W., Jiang, G.Z., Xu, Y.N., Kuang, T.Y.(2005) “Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium.” Process Biochemistry, 40, 1315-1318.
Freedman, B., Butterfield, R.O., Pryde, E.H.(1986)“Transesterification kinetics of soybean oil.” JAOCS, 63, 1375-1380.
Ginzburg, B.Z. (1993) ”Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy.” Renew. Energy, 3, 249–252.
Gordillo F.J.L., Goutx M., Figueroa F.L. and Niell F.X. (1998) “Effec of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis.” J. Appl. Phycol., 10, 135-144.
Guillard R.R.L.(1973)” Division rates. In: Stein (Ed.), Handbook of Phycological Methods, vol. 1.” Cambridge University Press, Cambridge, 289–312.
Hanagata, N., Takeuchi T., Fukuju, Y., Barnes, D.J., Karube, I. (1992) ”Tolerance of microalgae to high CO2 and high temperature.” Phytochem, 31, 3345-3348.
Hershkovitz, N., Oren, A., Cohen, Y. (1991) “Accumulation of trehalose and sucrose in cyanobacteria expose to matric water tress.” Appl. Environ. Microbial., 57, 645-648.
Hirata, S., Hayashitani, M., Taya, M., Tone S.(1996) “Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-cellection device.” Journal of Fermentation and Bioengineering, 81, 470-472.
Hoshida, H., Ohira, T., Minematsu, A., Akada, R., Nishizawa, Y. (2005) ”Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations.” J. Appl. Phycol., 17(1), 29-34.
Hu, Q.(2004) “Environmental effects on cell composition.” In: Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science. UK. 85-88.
Husic, H.D., Tolbert, N.E. (1986) “Effect of osmotic stress on carbon metabolism in Chlamydomonas reinhardtii accumulation of glycerol as an osmoregulatory solute.” Plant Physiol., 82, 594-596.
Kishimoto, M., Okamura, T., Nagashima, H., Minowa, T., Yokoyama, S., Yamaberi, K. (1994) “CO2 fixation and oil production using microalgae.” Journal of fermentation bioengineering, 78(6), 479-482.
Kodama, M., Ikemoto, H., Miyachi, S. (1993) “A new species of highly CO2-tolerant fast growing marine microalga suitable for high density culture.” Journal of marine biotechnology, 1, 21-25.
Kuhl, A. Zur.(1962) “Physiologie der Speicherung Kondersierter anorganischer Phosphate in Chlorella.“ Vortr. Botan. hrsg. Deut. Botan. Ges.(N. F.), 1, 157–166.
Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H., Miyachi, S. (1995) “Figation and utilization of carbon dioxide by microalgal photosynthesis.” Energy conversion and Management, 36, 689-692.
Lang, X., Dalai, A.K., Bakhshi, N.N., Reaney, M.J., Hertz, P.B.(2001)” Preparation and characterization of bio-diesels from various bio-oils.” Bioresour. Technol., 80, 53–62.
Lee, Y., Tay, H.S. (1991) “High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoudosa culture.” Applied phycologt, 3, 95-101.
Liu W., Au D. W. T., Anderson D. M.,Lam P. K. S., Wu R. S. S. (2007) ” Effects of nutrients, salinity, pH and light:dark on the production of reactive oxygen species in the alga Chlorella marina.” Journal of Experimental Marine Biology and Ecology, 346 , 76–86.
Ma, F., Hanna, M.A.(1999) “Biodiesel production: a review.” Bioresource technplogy, 70, 1-15.
Masojidek, J., Koblizek, M., Torzillo, G. (2004) ”Photosynthesis Richmond A, editor.” Handbook of Microalgal Culture: Phycology. Blackwell Science. UK. 20-33.
Miao X., Wu Q. (2006) “Biodiesel production from heterotrophic microalgal oil.” Bioresource Technology, 97, 841–846.
Milne, T.A., Evans, R.J., Nagle, N. (1990) “Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shapeselective zeolites.” Biomass, 21, 219–232.
Minowa, T., Yokoyama, S.Y., Kishimoto, M., Okakurat, T. (1995) “Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction.” Fuel, 74, 1735–1738.
Mostaert, A.S., Karsten, U., King, R.J. (1995) “Inorganic ions and mannitol in the red alga Caloglossa leprieurii(Ceramiales, Rhodophyta): response to salinity change.” Phycologia, 34, 501-507.
Murakami M., Ikenouchi M. (1997) ”The biological CO2 fixation and utilization project by rite(2).” Energy conversion and Management, 38, 493-497.
Mutsumi T., Karseno, and Toshiomi Y. (2006) “Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells.” Journal of bioscience and bioengineering, 101(3), 223–226.
Nielsen, E.S. (1955) “Carbon dioxide as carbon source and narcotic in photosynthesis and growth in Chlorella pyrenoudosa.” Physiology of plants, 8, 317-335.
Page-Sharp, M., Behm, C.A., Smith, G.D. (1999) “Involvement of the compatible solutes trehalose and sourse in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils.” Biochimica et Biophysica Acta, 1472, 519-528.
Peterson, C.L., Feldman, M., Korus, R., Auld, D.L.(1991) “Batch type transesterification process for winter rape oil.” Appl. Eng. Agric., 7(6), 711–716.
Porchia, A.C, Fiol, D.F., Salerno, G.L. (1999) “Differential synthesis of sucrose and trehalose in Euglena gracilis cells during growth and salt stress.” Plant Sci., 149, 43-49.
Pryde, E.H.,(1983) “Vegetable oil as diesel fuel: Overview.” JAOCS, 60, 1557-1558.
Pulz, O.(2001) “Photobioreactors: production systems for phototrophic microorganisms.” Appl. Microbiol. Biotechnol., 57(3), 287-293.

Ratledge C. (1989) “Biotechnology of oil and fats.” Academic Press, 2, 567-668.
Ratledge, C. (2004) “ Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production.” Biochimie, 86(11), 807-815.
Renaud, S.M., Thinh, L.V., Lambrinidis, G., Parry, D.L.(2002) “Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures.” Aquaculture, 211(1-4), 195-214.
Rodriguez–Lopez, M., Villarroya, M., Munoz–Calvo, M.L.(1980) “Influence of ammonium and nitrate on protein content, amino acid pattern, storage materials and fine structure of Chlorella 8H recovering from Nstarvation.” In: Shelef G, C. J. Soeder, editors. Algae Biomas. Elsevier Amsterdam. 723–731.
Schwab, A.W., Bagby, M.O., Freedman, B.(1987) “Preparation and properties of diesel fuels from vegetable oils.” Fuel, 66, 1372-1378.
Seto, A., Wong, H.L., Hesseltine, C.W. (1984) “Culture condition affect eicosapentaeonic acid content of Chlorella minutissim.” J. Am. Oil Chem., 61, 892-894.
Setter, T.L., Greenway, H., Kuo, J. (1982) “Inhibition of cell division by high external NaCl concentration in synchronized cultures of Chlorella emersonii to high NaCl.” Aust. J. Plant. Physiol., 9, 179-196.
Shi X. M., Liu H. J., Zhang X. W., Chen F. (1999) “Production of biomass and lutein by Chlorella prtothecoides at various glucose concentrations in heterotrophic culture.” Process Biochmeistry, 34, 341-347.


Shi, X.M., Zhang, X.W., Chen, F.(2000) “Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources.” Enzyme Microb. Technol., 27, 312–318.
Shi, XM, Chen F, Yuan JP, Chen H.(1997) “Heterotrophic production of lutein by selected Chlorella strains.” Journal of Applied Phycology, 9, 445–450.
Sorokin, C., Krauss, R.W.(1958) “The effect of light intensity on the growth rates of green algae.” Plant Physiol, 33, 109 –113.
Sridharan, R., Mathai, I.M.(1974) “Transesterification reactions.” J. Scient. Ind. Res., 33, 178-187.
Sukenik, A., Carmeli, Y., Berner, T.(1989) ’’Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochlopsis sp.” J. Phycol., 25, 686-692.
Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C. (1999) “Isolation of a new highly CO2 tolerant fresh water microalga Chlrella sp. KR-1.” Renewable energy, 16, 1019-1022.
Takagi, M., Watanabe, K., Yamaberi, K., Yoshida, T.(2000) “Limited feeding of potassium nitrate for intracellular lipid and triacylglyceride accumulation of Nanochloris sp. UTEXLB1999.” Appl. Microbiol. Biotechnol., 54, 112–117.
Takagi, M., Yoshida, T.(2006) “Effec of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells.” Journal of bioscience and bioengineering, 101, 223-226.
Tjisse van der Heide, Rudi M.M. Roijackers, Egbert H. van Nes, Edwin T.H.M. Peeters.(2006) “A simple equation for describing the temperature dependent growth of free-floating macrophytes.” Aquatic Botany, 84, 171-175.
Vicente, G., Martinez, M., Aracil, J. (2004) “Integrated biodiesel production: a comparison of different homogeneous catalysts systems.” Bioresour. Technol., 92, 297–305.
Watanabe, Y., Ohmura, N., Saiki, H. (1992) “Isolation and determination of cultural characteristics of microalage which function under CO2 entiched atmosphere.” Energy conversion and Management, 33, 545-552.
Wen, Z. Y., and Chen, F. (2003) “Heterotrophic production of eicosapentaenoic acid by microalgae” Biotecnology Advances, 21, 273-294.
Wu, Q.Y., Yin, S., Sheng, G.Y., Fu, J.M.(1992)” A comparative study of gases generated from stimulant thermal degradation of autotrophic and heterotrophic Chlorella.” Prog. Nat. Sci., 3, 435–440.
Yanagi, M., Watanabe, Y., Saiki, H. (1995) “CO2 fixation by Chlorella sp. HA-1 and its utilization.” Energy conversion management, 36(6-9), 713-716.
Zhang, Y., Dube, M.A., McLean, D.D., Kates, M.(2003) “Biodiesel production from waste cooking oil.” Bioresour. Technol., 89, 1–16.
工研院能環所(2001) “台灣地區生質柴油應用評估報告” 美國黃豆協會。
王藝蓉(2003) “以光生化反應器培養微藻生產脂肪酸” 私立大葉大學 食品工學系碩士論文。
柯瑜婷(2003) “兩種小球藻在鹽分與水分逆境的生理反應” 國立彰化師範大學生物學系碩士論文。

徐明光(1999) “台灣的淡水浮游藻(I)-通論及綠藻(1)”國立台灣博物館印行。
翁昭蓮(1999) “不同氮源對grateloupia filicm的影響” 農委會漁業特刊,64,21-25。
張伊作(1968) “綠藻”中央書局。
張惟閔(2005) “微藻培養於新型光生化反應器之系統開發” 國立清華大學化學工程研究所碩士論文。
郭彥廷(2007) “生質能源深入探討”永續發展電子報。
黃淑芳(1989) “認識藻類” 台灣省立博物館印行。
溫祖康(2007) “生質能源發展現況與我國推動能源作物之探討” 統計與出版品(農政與農情),186,12月。
經濟部能源局部性(2006) “國內外生質柴油發展現況”。
經濟部能源局部性(2007) “使用生質柴油打造綠色城鄉能源局喚起綠色意識”。
葉俊良(2006) “在光生化反應器中以二階段策略培養微藻生產油脂之研究” 國立成功大學化學工程學系碩士論文。
鄭恆琪、陳祐誠、林良平(1999) “以鹽度與溫度控制Chlorella minutissima淡水與海水株綠藻之長鏈不飽和脂肪酸量及成分” 中國農業化學誌,37(3),319-327。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信