淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1807200720410800
中文論文名稱 觸媒反應器之計算流體力學模擬
英文論文名稱 CFD simulation for catalytic reactors
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 陳逸明
研究生英文姓名 Yi-Ming Chen
學號 693360538
學位類別 碩士
語文別 中文
口試日期 2007-07-09
論文頁數 239頁
口試委員 指導教授-張煖
委員-張煖
委員-陳錫仁
委員-程學恆
中文關鍵字 薄膜反應器  甲醇合成  計算流體力學模擬  填充床反應器 
英文關鍵字 Computational Fluid Dynamics  Packed Bed Reactor  Catalytic Reactor  Catalytic Membrane Reactor  Methanol Synthesis 
學科別分類
中文摘要 本論文使用計算流體力學(Computational Fluid Dynamics,CFD) 軟體FLUENT配合一系列之使用者自定函數(User Defined Function, UDF)完成了自二氧化碳合成甲醇之填充床式觸媒反應器(Packed Bed Catalytic Reactor,PBR)與觸媒薄膜反應器(Catalytic Membrane Reactor,CMR)之三維模式模擬,模式納入了填充床球型觸媒顆粒反應器中(1)巨相之流力、熱傳與質傳;(2)觸媒顆粒內之流力、熱傳、質傳與化學反應;(3)巨相與觸媒顆粒間之流力、熱傳與質傳;及(4)薄膜兩側巨相間之流力、熱傳與質傳。流體速度限制於層流範圍。
透過模擬探討了反應器內部之特性分佈,包括壓力、速度、溫度與組成,並探討了參數之影響,包括觸媒顆粒孔徑、粒徑、操作壓力、進料流量、是否具薄膜與膜厚等。針對填充床之摩擦因子以及觸媒顆粒與巨氣相間之熱傳係數與質傳係數,本研究並比較模擬結果與文獻關聯式,結果顯示摩擦因子較吻合,熱傳係數與質傳係數則有極大差異。
英文摘要 This thesis uses Computational Fluid Dynamics, combining with a set of User Defined Functions (UDF) to accomplish the simulation studies for the Packed Bed Catalytic Reactor (PBR) and the Catalytic Membrane Reactor (CMR) for methanol synthesis from carbon dioxide and hydrogen.

The model encompasses all important mechanisms for PBR and CMR, including (1) the hydraulic, heat and mass transfers of bulk gas; (2) the hydraulic, heat and mass transfers and chemical reaction of catalyst; (3) the hydraulic, heat and mass transfers between bulk gas and catalyst; (4) the hydraulic, heat and mass transfers between bulk gases and membrane. The fluid is in the laminar flow region.

The simulation facilitates the discussions on the profiles inside the reactor, including pressure, velocity, temperature and composition. The effects of catalyst particle pore size, diameter, operation pressure, feed flowrate, with or without membrane and membrane thickness are studied. The friction factor of the bed and the heat and mass transfer coefficients between catalyst particle and bulk gas are compared with the correlations reported in the literature. The friction factors are close to the correlations predictions, however, the heat and mass transfer coefficients are not and the data are very scattering.
論文目次 致謝 ………………………………………………………………i
中文摘要 …………………………………………………………….. .iii
英文摘要 ...…………………………………………………………….iv
目錄 ………………………………………………………………v
圖目錄 ……………………………………..………………………viii
表目錄 .………………………………………………………...….xvii
第一章 前言 …………………………………………………….….1
第二章 文獻回顧 ……………………………………………….….4
2.1觸媒反應器 ……………………………………...………………..4
2.2薄膜反應器 ……………………………………………………….4
2.3甲醇合成 ………………………………………….………………5
第三章 甲醇合成系統 ……………………………………………..7
3.1化學反應和反應動力 …………………………………………….7
3.2薄膜特性 …………………………………………………….…...9
3.3設備配置 ………………………………………………………...10
第四章 一維數學模式 ……………………………………………12
4.1數學模式建立 …………………………………………………...12
4.2一維模式之數值方法及程式架構 ……………………………...15
第五章 計算流體力學模式 ……………........................................17
5.1統制方程式 ……………………………………………………...17
5.2系統配置與網格建立 …………………………………………..20
5.3FLUENT附加程式與設定 ……………………………………...29
5.3.1FLUENT附加程式 …………………………………………29
5.3.2FLUENT設定 ………………………………………………32
5.3.2.1觸媒反應器之FLUENT設定 …………………………33
5.3.2.2薄膜觸媒反應器之FLUENT設定 ……………………34
第六章 基本個案模擬結果 ……………………………..………..36
6.1基本個案/改變觸媒孔徑個案 …………………………………..40
6.1.1基本個案之設定條件 ………………………………………40
6.1.2質傳通量 ………………...………………………………….41
6.1.3有效因子 ……………………………………………………48
6.1.4反應程度 ……………………...…………………………….50
6.1.5壓力分佈 …………………………...……………………….51
6.1.6速度分佈比較 ……………………...……………………….57
6.1.7溫度分佈比較 ………………………………………………63
6.1.8組成分佈 ……………………………………………………69
6.2改變觸媒顆粒粒徑之影響 ………………………..…………….72
6.3改變進料流量之影響 ………………………….………………..79
6.4改變操作壓力之影響 …………………….…………………….82
6.5改變薄膜反應器薄膜厚度之影響 ………….………………….92
第七章 輸送參數分析 ……………………………………………96
7.1輸送係數之計算 ..………………………………………………97
7.1.1流力輸送係數 ………………………………………………97
7.1.2熱傳輸送係數 ………………………………………………98
7.1.3質傳輸送係數 ………………………………………………99
7.2 輸送係數與文獻關聯式之比較 ...……………………………101
7.2.1流力 ………………………………………………………101
7.2.2熱傳 ………………………………………………………108
7.2.3質傳 ………………………………………………………115
7.2.3.1擴散 …………………………………………………116
7.2.3.2對流與擴散……………………………………………147
第八章 結論 …..………………………………………………....178
符號說明 ………………………………………………………….…182
參考文獻 ……………………………………………………………..188
附錄 …………………………...…………………………………….194


圖目錄
圖3-1 甲醇薄膜反應器之配置………………………………...11
圖4-1 觸媒薄膜反應器一維模式之程式架構………………...16
圖5-1 觸媒顆粒規則排列之配置……………………………...20
圖5-2 觸媒顆粒不規則排列之配置…………………………...21
圖5-3 進口端完整截面N=5示意圖………………...................22
圖5-4 管壁 管壁邊界層之網格示意圖-觸媒反應器….……….……23
圖5-5 管壁邊界層之網格示意圖-薄膜觸媒反應器…………..24
圖5-6 球型觸媒表面內外邊界層之示意圖.……….…………..25
圖5-7 進口端1/4截面,N=5示意圖………………………….25
圖5-8 觸媒反應器之系統尺寸配置示意圖…………………….26
圖5-9 薄膜觸媒反應器之系統尺寸配置示意圖……………….26
圖5-10 觸媒反應器之GAMBIT繪製圖(3D)…………………....27
圖5-11 薄膜觸媒反應器之GAMBIT繪製圖(3D)……………...28
圖6-1 觸媒反應器所討論之截面………………………..……...39
圖6-2 觸媒薄膜反應器所討論之截面……………….….……...39
圖6-3 S-A截面-改變觸媒孔徑對系統錶壓之影響……….…...52
圖6-4 S-B截面-改變觸媒孔徑對系統錶壓之影響……………53
圖6-5 S-C截面-改變觸媒孔徑對系統錶壓之影響………....…54
圖6-6 S-D截面-改變觸媒孔徑對系統錶壓之影響……………55
圖6-7 S-E截面-改變觸媒孔徑對系統錶壓之影響………..…..56
圖6-8 S-A截面-改變觸媒孔徑對系統流體速度之影響….…..58
圖6-9 S-B截面-改變觸媒孔徑對系統流體速度之影響…..…..59
圖6-10 S-C截面-改變觸媒孔徑對系統流體速度之影響………60
圖6-11 S-D截面-改變觸媒孔徑對系統流體速度之影響…...….61
圖6-12 S-E截面-改變觸媒孔徑對系統流體速度之影響…..…..62
圖6-13 S-A截面-改變觸媒孔徑對系統溫度之影響……………64
圖6-14 S-B截面-改變觸媒孔徑對系統溫度之影響……...…….65
圖6-15 S-C截面-改變觸媒孔徑對系統溫度之影響………..…..66
圖6-16 S-D截面-改變觸媒孔徑對系統溫度之影響…...……….67
圖6-17 S-E截面-改變觸媒孔徑對系統溫度之影響……………68
圖6-18 S-A截面-改變觸媒孔徑對產物之影響
(ex. CH3OH)…………………………………...…………70
圖6-19 S-A截面-改變觸媒孔徑對反應物之影響 (ex. H2)….....71
圖6-20 S-A截面-改變觸媒粒徑對壓力分佈之影響………..…..73
圖6-21 S-B截面-相同觸媒孔徑下改變觸媒粒徑
對速度之影響…………………………………….………76
圖6-22 S-B截面-改變進料流量對觸媒顆粒尾流之影響.……...80
圖6-23 S-A截面-改變操作壓力對壓力分佈之影響……….…..84
圖6-24 S-A截面-改變操作壓力對速度分佈之影響……….…..86
圖6-25 S-A截面-改變操作壓力對生成物組成(CH3OH)
分佈之影響……………………………………..….…….88
圖6-26 S-A截面-改變操作壓力對反應物組成(H2)
分佈之影響……………………………………..….…….90
圖6-27 S-C截面-薄膜厚度對生成物組成(CH3OH)
分佈之影響……………………………………..………..94
圖6-28 S-C截面-薄膜厚度對反應物組成(H2)
分佈之影響………………………………………....……95
圖7-1 摩擦因子之比較-觸媒反應器, Ptube=40bar…………….102
圖7-2 摩擦因子之比較-觸媒反應器, Ptube=4.3bar……………103
圖7-3 摩擦因子之比較-薄膜觸媒反應器
(δ=50μm),Ptube =40bar…….……………………….…….104
圖7-4 摩擦因子之比較-薄膜觸媒反應器
(δ=315μm),Ptube =40bar…….…...………………….……105
圖7-5 摩擦因子之比較-薄膜觸媒反應器
(δ=50μm), Ptube =4.3bar……………………..…….…….106
圖7-6 摩擦因子之比較-薄膜觸媒反應器
(δ=315μm), Ptube =4.3bar………………………………..107
圖7-7 熱傳係數之比較-觸媒反應器, Ptube =40bar...…….……109
圖7-8 熱傳係數之比較-觸媒反應器, Ptube =4.3bar………...…110
圖7-9 熱傳係數之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar………..…………….……...……111
圖7-10 熱傳係數之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar……….…………….….…...……112
圖7-11 熱傳係數之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar………………….................……113
圖7-12 熱傳係數之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar……….….……….………....…114
圖7-13 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=40bar, CH3OH….............................................…….117
圖7-14 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=40bar,H2O…………………………..….………….118
圖7-15 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=40bar,CO……………………………….………….119
圖7-16 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=40bar,H2…………………………….……………..120
圖7-17 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=40bar,CO2……………………………….…………121
圖7-18 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=4.3bar,CH3OH…………………………….….……122
圖7-19 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=4.3bar,H2O…………………………………..……..123
圖7-20 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=4.3bar,CO………………….…………..…....……..124
圖7-21 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=4.3bar,H2………………………………….……….125
圖7-22 質傳係數(Sh_D)之比較-觸媒反應器,
Ptube=4.3bar,CO2……..……………………………..……126
圖7-23 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,CH3OH…………………….….…127
圖7-24 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,H2O……………....................….128
圖7-25 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,CO…………………….………..129
圖7-26 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,H2……………………….….…..130
圖7-27 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,CO2………………...….……….131
圖7-28 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,CH3OH………………….……132
圖7-29 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,H2O……………………...……133
圖7-30 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,CO……………………..……..134
圖7-31 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,H2……………………….…….135
圖7-32 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,CO2………………………..….136
圖7-33 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,CH3OH……………….….……137
圖7-34. 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,H2O……….……….……….….138
圖7-35 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,CO………………….…...…….139
圖7-36 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,H2…………………….………..140
圖7-37 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,CO2…………………..….……..141
圖7-38 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,CH3OH……………….………142
圖7-39 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,H2O…………………...……….143
圖7-40 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,CO……………………………..144
圖7-41 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,H2……………………...…..…..145
圖7-42 質傳係數(Sh_D)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,CO2………………...…...……..146
圖7-43 質傳係數(Sh)之比較-觸媒反應器Ptube=40bar,CH3OH………………………………148
圖7-44 質傳係數(Sh)之比較-觸媒反應器Ptube=40bar,H2O…………………………………149
圖7-45 質傳係數(Sh)之比較-觸媒反應器
Ptube=40bar,CO…………………….…………..150
圖7-46 質傳係數(Sh)之比較-觸媒反應器
Ptube=40bar,H2……………………………………151
圖7-47 質傳係數(Sh)之比較-觸媒反應器Ptube=40bar,CO2……….…………………………152
圖7-48 質傳係數(Sh)之比較-觸媒反應器Ptube=4.3bar,CH3OH………………………………153
圖7-49 質傳係數(Sh)之比較-觸媒反應器Ptube=4.3bar,H2O…………………………………154
圖7-50 質傳係數(Sh)之比較-觸媒反應器Ptube=4.3bar,CO……………………………………155
圖7-51 質傳係數(Sh)之比較-觸媒反應器Ptube=4.3bar,H2……………………………………156
圖7-52 質傳係數(Sh)之比較-觸媒反應器Ptube=4.3bar,CO2…………………………………157
圖7-53 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,CH3OH………………………….158
圖7-54 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm), Ptube=40bar,H2O……….……………...……..159
圖7-55 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,CO……………………….………160
圖7-56 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,H2……………………….………..161
圖7-57 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=40bar,CO2……………………..………..162
圖7-58 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,CH3OH…………………...…….163
圖7-59 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,H2O……………….……….……164
圖7-60 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,CO………...……………………165
圖7-61 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,H2………………………..……..166
圖7-62 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=40bar,CO2………………….….………167
圖7-63 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,CH3OH………………….………168
圖7-64 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,H2O…………….………………..169
圖7-65 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,CO……….……...………………170
圖7-66 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,H2…………….……...………….171
圖7-67 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=50μm),Ptube=4.3bar,CO2………….……...………..…172
圖7-68 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,CH3OH……….……...…….….173
圖7-69 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,H2O……….……...……...…….174
圖7-70 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,CO……………….……...…….175
圖7-71 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,H2………….……...……..……176
圖7-72 質傳係數(Sh)之比較-薄膜觸媒反應器
(δ=315μm),Ptube=4.3bar,CO2……….……...………..…..177


表目錄
表3-1 甲醇合成系統反應速率常數之參數……………..……...8
表3-2 甲醇合成系統吸附係數之參數值………………..……... 8
表3-3 Nafion膜之滲透係數-CH3OH, H2O…………………. 9
表3-4 Nafion膜之滲透係數-H2, CO2…..................................10
表5-1 管壁之邊界層設定參數………………………………....23
表5-2 觸媒反應器之低鬆弛因子設定……………...…………34
表5-3 觸媒薄膜反應器之低鬆弛因子設定……………………35
表6-1 個案彙整表………………………………………………37
表6-2 基本個案於管側之初始條件(模擬位置Z=0.5m)……....40
表6-3 基本個案於殼側之初始條件(模擬位置Z=0.5m)……....40
表6-4 CH3OH質傳量 (kg/s) (自觸媒顆粒至管中流體為正值)……43
表6-5 H2O質傳量 (kg/s) (自觸媒顆粒至管中流體為正值)…..44
表6-6 CO質傳量 (kg/s) (自觸媒顆粒至管中流體為正值)…...45
表6-7 H2質傳量 (kg/s) (自觸媒顆粒至管中流體為正值)…….46
表6-8 CO2質傳量 (kg/s) (自觸媒顆粒至管中流體為正值)…..47
表6-9 有效因子(R-1)………………………………………...….49
表6-10 有效因子(R-2)……………………………………………49
表6-11 有效因子(R-3)………………………………………...…49
表6-12 反應程度-甲醇生成量(kmole/s kgcat)……….………...50
表6-13 改變顆粒粒徑對反應程度-甲醇生成量之影響………..72
表6-14 改變進料流量對反應程度-甲醇生成量之影響…..…..79
表6-15 改變系統操作壓力對薄膜通量之影響……………...….83
表6-16 改變操作壓力對反應程度-甲醇生成量之影響……....83
表6-17 改變薄膜厚度對薄膜通量之影響…………………....…93
表6-18 改變薄膜厚度對反應程度-甲醇生成量之影響……....93

參考文獻 Anthony, G. D. and N. Michiel, “CFD as a design tool for Fixed-Bed Reactors,” Ind. Eng. Chem. Res., Vol. 40, pp. 5246-5254, 2001.

Baiker A., M. New and W. Richarz, “Determination of intraparticle diffusion coefficients in catalyst pellets – a comparative study of measuring methods,” Chem. Eng. Sci., Vol. 37, No. 4, pp. 643-656, 1982.

Barbieri, G., G. Marigliano, G. Golemme and E. Drioli, “Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor,” The Chemical Engineering Journal 85 pp. 53-59, 2002.

Basile, A., L. Paturzo and F. Laganà, “The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies,” Catalysis today Vol. 67, pp.65-75, 2001.

Cogan, R., G. Pipko and A. Nir, “Simultaneous intraparticle forced convection, diffusion and reaction in a porous catalyst-III, depolymerization of paraldehyde,” Chem. Eng. Sci., Vol. 37, No. 2, pp. 147-151, 1982.

Calis, H. P. A., J. Nijenhuis, B. C. Paikert, F. M. Dautzenberg, C. M. van den Bleek, “CFD modeling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing,” Chem. Eng. Sci., Vol. 56, pp. 1713-1720, 2001.

Chen, G. and Q. Yuan, “Methanol synthesis from CO2 using a silicone rubber/ceramic composite membrane reactor,” Separation and Purification Technology 34 pp. 227-237, 2004.

Dixon, A.G. and D. L. Cresswell, “Theoretical prediction of effective heat transfer parameters in packed beds,” AIChE J., pp.663-676, 1979.

Derkx, O. R. and A. G. Dixon, “Determination of the fixed bed wall heat transfer coefficient using computational fluid dynamics,” Numerical Heat Transfer, Part A, 29: pp. 777-794, 1996.

Ferreira, R. M. Q. and P. M. Simões, “Simulation of tubular reactors packed with large-pore catalysts with spherical geometry,” Computers chem. Engng. Vol. 19, Suppl., pp. S351-S356, 1995.

Ferreira, R. M. Q., M. M. Marques, M. F. Babo and A. E. Rodrigues, “Modelling of the methane steam reforming reactor with Large-Pore catalysts,” Chem. Eng. Sci., Vol. 47, No. 9-11, pp. 2909-2914, 1992.

Graaf, G. H., H. Scholtens, E. J. Stamhuis and A. A. C. M. Beenackers, “Intra-Particle diffusion limitations in Low-Pressure methanol sythesis, ” Chem. Eng. Sci., Vol. 45, No. 4, pp. 773-783, 1990.

Gunjal, P. R., V. V. Ranade and R. V. Chaudhari, “Computational study of a single-phase flow in packed beds of spheres,” AIChE J., Vol. 51, No.2, pp. 365-378, 2005.

Gallucci, F., L. Paturzo and A. Basile, “An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor,” Chemical Engineering and Processing 43 pp. 1029-1036, 2004.

Guardo, A., M. Coussirat, M. A. Larrayoz, F. Recasens and E. Egusquiza, “Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds,” Chem. Eng. Sci., 60, 1733-1742, 2005.

Hill, R. J., D. L. Koch and A. J. C. Ladd, “Moderate-Reynolds-Number flows in ordered and random arrays of spheres,” J. Fluid Mech. , Vol. 448, pp. 243-278, 2001.

Ji, P., H. J. van der Kooi and J. de Swaan Arons, “Simulation and thermodynamic analysis of an integrated process with H2 membrane CPO reactor for pure H2 production,” Chem. Eng. Sci., Vol. 58, pp. 3901-3911, 2003.

Jin,W., X. Gu, S. Li, P. Huang, N. Xu, J. Shi,“Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas,” Chem. Eng. Sci., Vol. 55, pp. 2617-2625, 2002.

Jiang, P.X., R.N. Xu, W. Gong, “Particle-to-fluid heat transfer coefficients in miniporous media,” Chem. Eng. Sci., Vol. 61, pp. 7213-7222, 2006.

Kaza, K. R., J. Villadsen and R. Jackson, “Intraparticle diffusion effects in the methannation reaction,” Chem. Eng. Sci., Vol. 35, pp. 17-24, Pergamon Press Ltd., 1980.

Lu, Z. P., M. M. Dias, J. C. B. Lopes, G. Carta and A. E. Rodrigues, “Diffusion, convection, and reaction in catalyst particles: Analogy between Slab and Sphere Geometries,” Ind. Eng. Chem. Res., 32, pp. 1839-1852, 1993.

Leitão, A. and A. Rodrigues, “Catalytic processes using “large-pore” materials: effects of the flow rate and operating temperature on the conversion in a plug-flow reactor for irreversible first-order reactions,” The Chemical Engineering Journal 60 pp. 111-116, 1995.

Lopes , J. C. B., M. M. Dias, V. G. Mata and A. Rodrigues, “Flow field and non-isothermal effects on diffusion, convection and reaction in permeable catalysts,” Ind. Eng. Chem. Res., Vol. 34, pp. 148-157, 1995.

Logtenberg, S. A. and A. G. Dixon, “Computational fluid dynamics studies of the effects of temperature-dependent physical properties on fixed-bed heat transfer,” Ind. Eng. Chem. Res, 37, pp. 739-747, 1998.

Logtenberg, S. A. and A. G. Dixon, “Computational fluid dynamics studies of fixed bed heat transfer,” Chemical Engineering and Processing 37 pp. 7-21, 1998.

Logtenberg, S. A., M. Nijemeisland and A. G. Dixon, “Computational fluid dynamics simulations of fluid flow and heat transfer at the wall-particle contact points in a fixed-bed reactor,” Chem. Eng. Sci., Vol. 54, pp. 2433-2439, 1999.

Lommerts, B. J., G. H. Graaf, A. A. C. M. Beenackers, “Mathematical modeling of internal mass transport limitations in methanol synthesis,” Chem. Eng. Sci., Vol. 55, pp. 5589-5598, 2000.

Magnico, P., “Hydrodynamic and transport properties of packed beds in small tube-to-sphere diameter ratio: pore scale simulation using an Eulerian and a Lagrangian approach,” Chem. Eng. Sci., Vol. 58, pp. 5005-5024, 2003.

Margarita (Modek) Gimmelshtein, Raphael Semiat, “Investigation of flow next to membrane walls,” Journal of Membrane Science 264 pp. 137-150, 2005

Mason E. A., and S. C. Saxena “Phys. Fluid,” Vol.1, pp.361, 1958

Nijemeisland, M., A. G. Dixon and E. H. Stitt, “Catalyst design by CFD for heat transfer and reaction in steam reforming,” Chem. Eng. Sci., 59, 5185-5191, 2004.

Nijemeisland, M. and A. G. Dixon, “Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed,” The Chemical Engineering Journal 82 pp. 231-246, 2001.

Nan, H. S., M. M. Dias, J. C. B. Lopes and A. E. Rodrigues, “Diffusion, convection and reaction in catalyst particles: analogy between slab and cylinder geometries,” The Chemical Engineering Journal 61 (1996) pp. 113-122, 1996.

Nan, H.S., M. M. Dias and A. E. Rodrigues, “Effect of forced convection on reaction with mole changesin porous catalysts,” The Chemical Engineering Journal 57 pp. 101-114, 1995.

Nir, A. “Simultaneous intraparticle forced convection, diffusion and reaction in a porous catalyst-II, selectivity of sequential reactions,” Chem. Eng. Sci., Vol. 32, pp. 925-930, 1977.

Nir, A. and L. M. Pismen, “Simultaneous intraparticle forced convection, diffusion and reaction in a porous catalyst,” Chem. Eng. Sci., Vol. 32, pp. 35-41, 1977.

Romkes, S. J. P., F. M. Dautzenberg, C. M. van den Bleek, H. P. A. Calis, “CFD modeling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio,” The Chemical Engineering Journal 96 pp. 3-13, 2003.

Rodrigues, A. E., B.J. Ahn and A. Zoulalian, “Intraparticle-Forced convection effect in catalyst diffusivity measurements and reactor design,” AIChE J., Vol. 35, No. 4, pp. 541-546, 1982.

Rodrigues, A. E. and R. M. Q. Ferreira, “Effect of intraparticle convection on the steady-state behavior of fixed-bed catalytic reactors,” Chem. Eng. Sci., Vol. 45, No. 8, pp. 2653-2660, 1990.

Skriypek, J., M. Grzesik, R. Szopa, “Analysis of the low-temperature methanol synthesis in a single commercial isothermal Cu-Zu-Al catalyst pellet using the dusty-gas diffusion model,” Chem. Eng. Sci., Vol. 40, No. 4, pp. 671-673, 1985.

Sea, B. and K.H. Lee, “Methanol synthesis from carbon dioxide and hydrogen using a ceramic membrane reactor,” React. Kinet. Catal. Lett. Vol.80, No. 1, pp. 33-38, 2003.

Struis, R. P. W. J., S. Stucki and M. Wiedorn,“ A membrane reactor for methanol synthesis,” J. Mem. Sci., 113, 93-100, 1996.

Struis, R. P. W. J. and S. Stucki,” Verification of the membrane reactor concept for the methanol synthesis,” App. Catal. A: Gen., 216, 117-129, 2001.

Tsotsas, E. and E. U. Schlünder, “Heat transfer in Packed Beds with fluid flow: Remarks on the meaning and the calculation of a heat transfer coefficient at the wall,” Chem. Eng. Sci., Vol. 45, No. 4, pp. 819-837, 1990.

Veldsink, J. W., R. M. J. van Damme, G. F. Versteeg, W. P. M. van Swaaij, “The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media,” The Chemical Engineering Journal Vol. 57 pp. 115-125. 1995.

Wilke, C. R., J. Chem. Phys.,Vol.18, pp.517, 1950

Wassiljewa, A., Physik. Z.,Vol.5, pp.737, 1904

Wijngaarden, R. J. and K. R. Westerterp, “Do the effective heat conductivity and the heat transfer coefficient at the wall inside a Packed Bed depend on a chemical reaction weaknesses and applicability of current models,” Chem. Eng. Sci., Vol. 44, No. 8, pp. 1653-1663, 1989.

Xu, J. and G. F. Froment,“ Methane steam reforming : Ⅱ. Diffusional limitations and reactor simulation,” AIChE J., 35, 97-103, 1989.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信