淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1807200716111600
中文論文名稱 陶瓷薄膜處理含油廢水之評估
英文論文名稱 Treatment of oily water by ceramic membrane
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 李昱辰
研究生英文姓名 Yu-Cheng Lee
學號 694330225
學位類別 碩士
語文別 中文
口試日期 2007-06-14
論文頁數 66頁
口試委員 指導教授-李奇旺
委員-李柏青
委員-陳孝行
中文關鍵字 含油廢水  陶瓷薄膜  Dead-End過濾  掃流  D2EHPA 
英文關鍵字 Oily water  ceramic membrane  Dead-End filtration  crossflow  D2EHPA 
學科別分類 學科別應用科學環境工程
中文摘要 本研究主要利用陶瓷薄膜以crossflow及Dead-End過濾的方式將含油廢水油水分離。含油廢水主要分為兩種來源,一為CASE系統產生之含油廢水,另一為傳統乳化之含油廢水。
在crossflow過濾型式,初始濾出流速會隨著TMP增加而增加;之後,隨著壓力繼續增加,濾出流速卻呈現穩定態;最後,TMP持續上升而濾出流速反而突升,並且濾出水樣之COD也隨之升高。因此,含油廢水以陶瓷薄膜掃流過濾,在低TMP下過濾方能達到最佳效果。
在Dead-End過濾型式,CASE系統產生之含油廢水以每10 min過濾加入2 min掃流來減少薄膜過濾造成的阻塞,並且,當濾速低於100 L m-2 H-1以下,TMP可達穩定態。相較來說,以傳統乳化之含油廢水來進行過濾,薄膜內因阻塞造成TMP隨時間變化而逐漸累積上升。
以薄膜Dead-End過濾CASE系統產生之含油廢水的探討中,將討論廢水特性造成薄膜過濾之影響。廢水濃度設為0.1至1%,不過,廢水濃度之大小對薄膜阻塞影響性較小。不過,不同的溶質溶劑比例將會影響薄膜過濾而造成阻塞。在廢水濃度設為0.4%,當溶質溶劑比例為1:1和5:1時,TMP會隨著過濾時間變化而升高,而當過濾溶質溶劑比例為1:10之過濾TMP卻為穩定態。最後,在含油廢水溶劑的回收方面,我們知道當溶劑經過薄膜過濾後可達到回收之最大量。
英文摘要 This research's goal is to separate oil from water using a ceramic membrane operated in crossflow and dead-end filtration modes, respectively. Two types of oily water generated by CASE and traditional emulsification methods, respectively, were treated.
Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship could be observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At this stage, oil was pushed through membrane pores as indicated by increasing permeate COD.
In dead-end filtration mode, an intermittent crossflow (2 min after a 10-min of dead-end filtration) was incorporated to reduce membrane fouling. TMP was stable throughout the experiment for tests operated at flux of less than 100 lm-2h-1 when CASE generated water was treated. On the other hand, TMP increased gradually with time for treating traditionally emulsified oily water.
Effects of oily water compositions generated by CASE on dead-end filtration were also investigated. Oil contents ranging from 0.1 to 1% have not detrimental effect on membrane fouling. However, extractant/solvent ratios do have impact on membrane fouling. At fixed oil content of 0.4%, TMP for treating oily water made of extractant/solvent ratios of 1:1 and 5:1 increased with increasing filtration time. Finally, the recovery of oil from membrane retentate was compared with that of original water, showing enhancement of oil recovery after membrane filtration.
論文目次 第一章 前言 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 乳化 4
2-2 微米油膜氣泡萃取系統 5
2-3 油水分離之研究 6
2-4 薄膜分離 7
2-4-1 薄膜種類 7
2-4-2 薄膜分離機制及應用 9
2-4-3 薄膜阻塞 12
2-5實驗參數之探討 13
2-5-1 濃度極化 13
2-5-2 結垢現象 15
2-5-3 薄膜穿透壓力 18
2-5-4 掃流速度 19
2-5-6 臨界通量 20
第三章 實驗方法 23
3-1實驗材料 23
3-1-1 實驗藥材 23
3-1-2 含油原水 25
3-1-2 陶瓷薄膜 25
3-2 實驗設備 26
3-3 實驗方法 28
3-3-1 實驗步驟與流程 28
3-3-2 薄膜清洗 30
3-4 分析方法 31
3-4-1 化學需氧量分析 31
3-4-2 壓力監測 32
第四章 結果與討論 36
4-1 陶瓷薄膜以掃流過濾含油廢水之探討 36
4-2 陶瓷薄膜以Dead-End系統過濾含油廢水之探討 40
4-3 Dead-End過濾時間對含油廢水之探討 43
4-4 Dead-End過濾進流流量對含油廢水之探討 45
4-5 含油廢水之溶質溶劑比例對陶瓷薄膜過濾之探討 48
4-6 含油廢水不同濃度對陶瓷薄膜過濾之探討 51
4-7 不同壓力產生之含油廢水對陶瓷薄膜過濾之探討 53
4-8 含油廢水溶劑回收之探討 55
第五章 結論 61
第六章 參考文獻 63

圖1、各種薄膜孔徑大小[16] 8
圖2、傳統式Dead-End過濾示意圖[17] 10
圖3、掃流式(crossflow)過濾示意圖[17] 11
圖4、阻塞過濾的三種機構[17] 13
圖5、極化現象[26] 14
圖6、無凝膠形成的過濾[17] 15
圖7、有凝膠形成的過濾[17] 16
圖8、過濾濾速與薄膜穿透壓力之示意圖[17] 18
圖9、在每30 min薄膜過濾水樣的間距下,隨著薄膜穿透壓力增加直到濾出流量為非線性曲線,此可表是為薄膜臨界通量[35] 21
圖10、利用薄膜通流來決定臨界流量之界位點[34] 22
圖11、含油廢水之調配方式(傳統乳化及CASE程序) 25
圖12、掃流過濾系統實驗設備圖 27
圖13、Dead-End過濾系統實驗設備圖 28
圖14、掃流過濾系統實驗流程圖 29
圖15、Dead-End過濾系統實驗流程圖 30
圖16、掃流過濾系統下,去離子水以不同掃流流速於薄膜之滲流量對薄膜穿透壓力之關係 31
圖17、薄膜進口壓力-電流轉換計之(低)壓力與電流關係圖 33
圖18、薄膜進口壓力-電流轉換計之(高)壓力與電流關係圖 33
圖19、薄膜出口壓力-電流轉換計之(低)壓力與電流關係圖 34
圖20、薄膜出口壓力-電流轉換計之(高)壓力與電流關係圖 35
圖21、CASE系統之含油廢水,不同掃流流速下濾出通量對壓力之關係 37
圖22、傳統乳化之含油廢水,不同掃流流速下濾出通量對壓力之關係 38
圖23、CASE系統之含油廢水,不同掃流流速下COD對壓力之關係 39
圖24、傳統乳化之含油廢水,不同掃流流速下COD對壓力之關係 39
圖25、利用Dead-End系統過濾傳統乳化與CASE之薄膜穿透壓力與時間的變化 41
圖26、以Dead-End系統過濾傳統乳化與CASE之Specific Flux與出流量的變化 42
圖27、利用Dead-End系統過濾傳統乳化與CASE之COD與時間的變化 43
圖28、過濾傳統乳化與CASE系統之含油廢水,以不同掃流時間對薄膜TMP之關係 44
圖29、過濾傳統乳化與CASE系統之含油廢水,以不同掃流時間對濾出液COD之關係 45
圖30、Dead-End過濾以不同進流流量下,薄膜內TMP對時間的關係 46
圖31、Dead-End過濾以不同進流流量下,薄膜內Specific Flux對時間的關係 47
圖32、Dead-End過濾以不同進流流量下,濾出水之COD對時間的關係 48
圖33、不同比例溶質溶劑(D2EHPA:kerosene)之含油廢水過濾,探討TMP對時間之關係 49
圖34、水中萃取劑與COD之關係圖[6] 50
圖35、不同比例溶質溶劑(D2EHPA:kerosene)之含油廢水過濾,探討濾出之COD對時間之關係 51
圖36、不同濃度之CASE系統含油廢水,過濾之TMP對時間之關係 52
圖37、不同濃度之CASE系統含油廢水,濾出之COD對時間之關係 53
圖38、不同壓力下噴出的含油廢水,以薄膜過濾之TMP對時間的關係 54
圖39、不同壓力下噴出的含油廢水,以薄膜過濾之COD對時間的關係 55
圖40、不同壓力下噴出的含油廢水,靜置後上層液之COD對時間的關係 58
圖41、不同壓力下噴出的含油廢水,靜置後下層液之COD對時間的關係 59

表1、薄膜孔徑大小與過濾適用的壓力[16] 9
表2、藥材清單 24
表3、CASE系統下,Dead-End過濾不同溶劑比例的含油廢水之COD回收 56
表4、傳統乳化下,Dead-End過濾不同溶劑比例的含油廢水之COD回收 56
表5、D2EHPA:kerosene為1:10,靜置10 min後上層COD與原水之濃縮比 60

參考文獻 [1] Novales, B, Papineau, P, Sire, A, and Axelos, MAV Characterization of emulsions and suspensions by video image analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003;221:81.
[2] 高文弘, and 周賢孟編著 界面化學. 黎明書局 1980.
[3] Clayton, W The theory of emulsion and their technical treatment.4th ed. The Biskiston Co.,New York 1943.
[4] Becher, P Nonionic surface-active compounds. VII. Interfacial tensions of solutions of nonionic surface-active agents. Journal of Colloid Science 1963;18:665.
[5] Walstra, P Formation of emulsions, in Encyclopedia of Emulsion Technology, Vol.1, basic theory, Becher P. eds. Marcel Dekker, Inc.,New York 1983:369-404.
[6] 蕭世典 萃取新技術:微米油膜氣泡萃取系統 (CASE). 淡江大學水資源及環境工程學系,碩士論文 2007.
[7] Vold, MJ Mechanism for the ultracentrifugal demulsification of O/W emulsions. Langmuir 1985;1:74.
[8] Al-Shamrani, AA, James, A, and Xiao, H Separation of oil from water by dissolved air flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002;209:15.
[9] Chen, G, and He, G Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Separation and Purification Technology 2003;31:83.
[10] Rajakovic, V, and Skala, D Separation of water-in-oil emulsions by freeze/thaw method and microwave radiation. Separation and Purification Technology 2006;49:192.
[11] Ichikawa, T Electrical demulsification of oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007;302:581.
[12] Ohya, H, Kim, JJ, Chinen, A, Aihara, M, Semenova, SI, Negishi, Y, Mori, O, and Yasuda, M Effects of pore size on separation mechanisms of microfiltration of oily water, using porous glass tubular membrane. Journal of Membrane Science 1998;145:1.
[13] Kawakatsu, T, Boom, RM, Nabetani, H, Kikuchi, Y, and Nakajima, M Emulsion breakdown: Mechanisms and development of multilayer membrane. AIChE Journal 1999;45:967.
[14] Zhao, Y, Tan, Y, Wong, F-S, Fane, AG, and Xu, N Formation of dynamic membranes for oily water separation by crossflow filtration. Separation and Purification Technology 2005;44:212.
[15] Lobo, A, Cambiella, A, Benito, JM, Pazos, C, and Coca, J Ultrafiltration of oil-in-water emulsions with ceramic membranes: Influence of pH and crossflow velocity. Journal of Membrane Science 2006;278:328-334.
[16] Madaeni, SS The application of membrane technology for water disinfection. Water Research 1999;33:301.
[17] 呂維明, and 呂文芳編 過濾技術. 高立圖書有限公司 1994.
[18] Cabassud, C, Anselme, C, Bersillon, JL, and Aptel, P Ultrafiltration as a nonpolluting alternative to traditional clarification in water treatment. Filtration & Separation 1991;28:194.
[19] Fifield, CW, and Leahy, TJ Sterilization filtration. Disinfection, Sterilization and Preservation,ed. S.S. Block. Lea and Febiger, Philadelphia 1983:125-153.
[20] Jacangelo, JG, Aleta, EM, Carns, KE, Cumming, EW, and Mallevialle, J Assessing hollow-fiber ultrafiltration for particulate removal. American Water Works Association Journal 1989;81:68-75.
[21] Madsen, RF Membrane technology as a tool to prevent dangers to human health by water-reuse. Desalination 1987;67:381.
[22] Bourgeous, KN, Darby, JL, and Tchobanoglous, G Ultrafiltration of wastewater: effects of particles, mode of operation, and backwash effectiveness. Water Research 2001;35:77.
[23] Song, L Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. Journal of Membrane Science 1998;139:183.
[24] Lin, C-F, Huang, Y-J, and Hao, OJ Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Research 1999;33:1252.
[25] Bian, R, Watanabe, Y, Tambo, N, and Ozawa, G Removal of humic substances by uf and nf membrane systems. Water Science and Technology 1999;40:121.
[26] 郭文正, and 曾添文 薄膜分離. 高立圖書有限公司 1988.
[27] Tansel, B, Bao, WY, and Tansel, IN Characterization of fouling kinetics in ultrafiltration systems by resistances in series model. Desalination 2000;129:7.
[28] Laine, JM, Hagstrom, JP, Clark, MM, and Mallevialle, J Effects of ultrafiltration membrane composition. Journal American Water Works Association 1989;81:61-67.
[29] Chen, V, Fane, AG, Madaeni, S, and Wenten, IG Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation. Journal of Membrane Science 1997;125:109.
[30] Gesan, G, Daufin, G, Merin, U, Labbe, JP, and Quemerais, A Fouling during constant flux crossflow microfiltration of pretreated whey. Influence of transmembrane pressure gradient. Journal of Membrane Science 1993;80:131.
[31] Wu, C-SJ, and Lee, E-H Ultrafiltration of soybean oil/hexane extract by porous ceramic membranes. Journal of Membrane Science 1999;154:251-259.
[32] Nabi, N, Aimar, P, and Meireles, M Ultrafiltration of an olive oil emulsion stabilized by an anionic surfactant. Journal of Membrane Science 2000;166:177-188.
[33] Field, RW, Wu, D, Howell, JA, and Gupta, BB Critical flux concept for microfiltration fouling. Journal of Membrane Science 1995;100:259.
[34] Chiu, TY, and James, AE Sustainable flux enhancement in non-circular ceramic membranes on wastewater using the Fenton process. Journal of Membrane Science 2006;279:347.
[35] Gesan-Guiziou, G, Wakeman, RJ, and Daufin, G Stability of latex crossflow filtration: cake properties and critical conditions of deposition. Chemical Engineering Journal 2002;85:27.
[36] Vlyssides, AG, Mai, ST, and Barampouti, EMP Bubble size distribution formed by depressurizing air-saturated water. Industrial and Engineering Chemistry Research 2004;43:2775.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信