§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807200715411400
DOI 10.6846/TKU.2007.00538
論文名稱(中文) 拍翼在惡劣天氣下之空氣動力數值模擬與性能分析
論文名稱(英文) Numerical Simulation of Flapping Wing Aerodynamic Performance under Severe Weather Conditions
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 黃建魁
研究生(英文) Chian-Kuei Huang
學號 694370015
學位類別 碩士
語言別 英文
第二語言別
口試日期 2007-07-11
論文頁數 69頁
口試委員 指導教授 - 宛 同
委員 - 潘大知
委員 - 苗志銘
關鍵字(中) 拍撲翼
動態網格
惡劣天候
關鍵字(英) Flapping wing
Dynamic mesh
Severe weather conditions
第三語言關鍵字
學科別分類
中文摘要
在有關拍撲翼的空氣動力性能分析的論文中,其中不乏數值模擬及實驗結果。然而這些文章只探討拍撲翼在靜止大氣下之行為模式,然而,在實際上,大氣是充滿擾動的。即使是小小的擾動,如亂流,也有可能造成微飛行器相當大的傷害。
  本文以計算流體力學的方式,利用現有之FLUENT商用軟體及動態網格技術,並簡化拍撲翼之運動模式,在非穩態流場中,計算二維拍撲翼在滯空時的升力與推力變化。
  最後,本文建立適當之亂流風場,考慮拍撲翼在滯空時可能遭受到的風場模擬,發現風場的變化確能造成拍撲翼升力的改變,當風速越大時,升力的改變越劇烈,隨著自由流方向的改變,其升力的大小亦隨之改變。
  天候對拍撲翼的影響是一直存在的,在設計微飛行器時亦是須被考量在內的一點,本文對於相關的議題作了一個初步的結果,未來將以三維真實拍撲翼為考量,並考慮大雨可能造成的影響,以提供設計微飛行器的參考之一。
英文摘要
Numbers of studies about flapping wing aerodynamic performance have been published including experiment and simulation. But these researches only consider that flapping motion work under calm and clear atmospheric conditions. Small atmospheric disturbance, such as gust wind, could lead to flapping MAV (Micro Aerial Vehicle) great damage. 
In this thesis, using numerical method and employ FLUENT software as the flow solver, the motions of flapping wing are simplified and combine with the dynamic mesh technique. Thus, we could calculate the 2-D flapping wing aerodynamic parameters such as lift and thrust in unsteady flow.
Finally, we constructed the gust wind profile, and simulating the flapping behavior in gust wind conditions. We found that the lift did change with the wind speed. As wind speed gets large, the lift also change more violently. Lift also changes while directions of gust wind change.
Weather influence always exists, and must be considered in designing MAVs. This thesis made a preliminary study to the topics. In future, we can consider the real cases such as 3-D flapping wing and rain effects to provide more realistic the consideration of designing the MAVs.
第三語言摘要
論文目次
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 RESEARCH BACKGROUND	5
2-1	 LITERATURE REVIEW	5
2-2	 FLIGHT MECHANISM	8
2-3	 GUST WIND PHYSICS	12
CHAPTER 3 NUMERICAL MODELING	14
3-1	 PREPROCESSING	14
3-2	 MESH SYSTEM	17
3-3	 GOVERNING EQUATIONS	20
3-4	 NUMERICAL METHOD	22
3-5	 GUST WIND MODELING	27
3-6	 VERIFICATION	33
CHAPTER 4 RESULTS AND DISCUSSION	36
CHAPTER 5 CONCLUSION	51
REFERENCES	52
APPENDIX	55
 

Fig. 1.1  Reynolds number range for flight vehicles.	2
Fig. 2.2  Stoke plane inclined at an angle β to the horizontal.	8
Fig. 2.3  (a) The wing tip path viewed from the side. (b) The wingbeat viewed from above.	9
Fig. 2.4  The wingbeat of a bat.	10
Fig. 2.5  The downstroke of a vertical take-off by Pieris brassicae.	11
Fig. 3.1  The positions of flapping wing in one period.	14
Fig. 3.2  Grids and calculated field.	19
Fig. 3.3  Grids around the flapping wing.	19
Fig. 3.4  The solution loop of the segregated solver.	22
Fig. 3.5  1-D control volume.	24
Fig. 3.6  X direction real gust wind velocity.	28
Fig. 3.7  Y direction real gust wind velocity.	28
Fig. 3.8  T1 parameter in X direction.	29
Fig. 3.9  T1 parameter in Y direction.	29
Fig. 3.10  X direction gust wind model velocity.	31
Fig. 3.11  Y direction gust wind model velocity.	31
Fig. 3.12  T1 parameter in X direction.	32
Fig. 3.13  T1 parameter in Y direction.	32
Fig. 3.14  The mesh of impulsively started flow over a cylinder	34
Fig.3.15  Numerical result for velocity uθ(r) vs. r/R compared with theory.	35
Fig. 3.16  The velocity along the symmetry axis at different instant.	35
Fig. 4.1  Vorticity contour at 0.25T	39
Fig. 4.2  Vorticity contour at 0.5T	39
Fig. 4.3  Vorticity contour at 0.75T	39
Fig. 4.4  Vorticity contour at 1T	39
Fig. 4.5  Lift profile in first ten periods.	40
Fig. 4.6  Drag vs. period.	40
Fig. 4.7  Lift vs. period comparing with references.	41
Fig. 4.8  Wind magnitude vs. period in case 1.	42
Fig. 4.9  Wind speed in different direction in case 1.	42
Fig. 4.10  Lift vs. period in case 1.	43
Fig. 4.11  Drag vs. period in case 1.	43
Fig. 4.12  Mean lift per period in case 1.	44
Fig. 4.13  Mean drag per period in case 2.	44
Fig. 4.14  Wind magnitude vs. period in case 2.	45
Fig. 4.15  Wind speed in different direction in case 2.	45
Fig. 4.16  Lift vs. period in case 2.	46
Fig. 4.17  Drag vs. period in case 2.	46
Fig. 4.18  Mean lift per period in case 2.	47
Fig. 4.19  Mean drag per period in case 2.	47
Fig. 4.20  Wind magnitude vs. period in case 3.	48
Fig. 4.21  Wind speed in different direction in case 3.	48
Fig. 4.22  Lift vs. period in case 3.	49
Fig. 4.23  Drag vs. period in case 3.	49
Fig. 4.24  Mean lift per period in case 3	50
Fig. 4.25  Mean drag per period in case 3	50
參考文獻
[1]	Shyy, W., M. Berg and D. Ljungqvist, “Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Sciences Vol. 35, pp. 455-505, 1999
[2]	Mueller, J. Thomas and J. D. DeLaurier, “An Overview of Micro Air Vehicle Aerodynamics,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Vol. 195, pp. 1-9, 2001.
[3]	Ellington, C.P. “Unsteady Aerodynamics of Insect Flight,” Symposia of the Society for Experimental Biology, Vol.49, pp. 109-129, 1995. 
[4]	Sane, S.P., “The Aerodynamics of Insect Flight,” J. of Exp. Biology Vol. 206, pp.4191-4208, 2003.
[5]	Ellington, C.P. “The Aerodynamics of Hovering Insect Flight: III. Kinematics,” Philosophical Transactions of the Royal Society of London B.305, pp.41-78, 1984.
[6]	Gustafson, K. and R. Leben, “Computation of Dragonfly Aerodynamics,” Computational Phys. Communication, Vol. 65, No. 121, pp. 121-132, 1991.
[7]	Gustafson, K., Leben, R. and J. McArthur, “Lift and Thrust Generation by an Airfoil in Hover Modes,” CFD Journal, Vol. 1, pp. 47-57, 1992.
[8]	Freymuth, P. “Thrust Generation by an Airfoil in Hover Modes,” Experiments in Fluids, Vol. 9, No.1-2, pp. 17-24, 1990.
[9]	Vest, M. S. and J. Katz, “Unsteady Aerodynamic Model of Flapping Wings,” AIAA Journal, Vol.34, pp. 1435-1440, 1996.
[10]	Wang, Z. J., “Two Dimensional Mechanism for Insect Hovering,” Physical Review Letters, Vol. 85, No.10, pp. 2216-2219, 2000.
[11]	Miao, J. M., M. H. Ho and C. H. Tai, “Numerical Approach to the Aerodynamic Characteristics of Low Reynolds Number Flapping-Wing Motion,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol.37, No.2, pp. 135-146, 2005.
[12]	Liu, H. and K. Kawachi, “A Numerical Study of Insect Flight,” J. of Comp. Physics, Vol. 146, No.1 pp. 124-156, 1998.
[13]	Sun, M. and S. L. Lan, “A Computational Study of the Aerodynamic Force and Power Requirement of Tiny Dragonfly,” J. of Exp. Biology Vol. 207, pp. 1889-1907, 2004.
[14]	Ho, S., H. Nassef, N. Pornsinsirirak, Y. C. Tai and C. M. Ho, “Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers,” Progress in Aerospace Sciences, Vol.39, pp. 635-681, 2003
[15]	Smith, M. J. C., “Simulating Moth Wing Aerodynamics: Towards the Development of Flapping Wing Technology,” AIAA Journal, Vol. 34 No.7, pp. 1348-1355, 1996.
[16]	Shyy, W., D. A. Jenkins and R. W. Smith, “Study of Adaptive Shape Airfoils at Low Reynolds Number in Oscillatory Flow,” AIAA Journal, Vol.35, pp. 1545-1548, 1997. 
[17]	Ellington, C.P and J. R. Usherwood, “Lift and Drag Characteristics of Rotary and Flapping Wings,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Vol. 195, pp. 231-246, 2001.
[18]	Tennekes, H. and J. L. Lumley, “A First Course in Turbulence,” MIT Press Design Department, 1973.
[19]	FLUENT 6.2’s User Guide.
[20]	Wan, T. and H. F. Huang, “Clear Air Turbulence Strategy Analysis via Genetic Algorithm and Neural Network Method,” AIAA paper 2002-0941, 2002.
[21]	Bouard, R. and M. Coutanceau, ”The Early Stage of Development of the Wake Behind an Impulsively Started Cylinder for 40<Re<104,” Journal of Fluid Mechanics, Vol. 101, pp.583-607, 1980. 
[22]	Wang, Z. J., “Vortex Shedding and Frequency Selection in Flapping Flight,” Journal of Fluid Mechanics, Vol. 410, pp. 323-341, 2000.
[23]	Dickinson, M. H., F. O. Lehmann and S. P. Sane, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, Vol. 284, pp. 1954-1960, 1996.
[24]	程慕林,“昆蟲振翅飛行原理的數值模擬研究”,政學者論文集,北京大學,第143-171頁,2001。
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信