淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1806201419383200
中文論文名稱 轉爐石與粒狀氫氧化鐵去除磷之比較
英文論文名稱 Comparisons of Phosphate removal between blast furnace slags and Granular Ferric Hydroxide
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 黃俊霖
研究生英文姓名 Chun-Lin Huang
學號 601480154
學位類別 碩士
語文別 中文
口試日期 2014-06-12
論文頁數 60頁
口試委員 指導教授-康世芳
委員-李柏青
委員-柯明賢
中文關鍵字   轉爐石  粒狀氫氧化鐵  沉澱  吸附 
英文關鍵字 Phosphate  Basic oxygen furnace steel slag  Granular ferric hydroxide  precipitation  adsorption 
學科別分類 學科別應用科學環境工程
中文摘要 轉爐石(BOF)為鋼鐵製程之工業副產物且為廉價的吸附劑,粒狀氫氧化鐵(GFH)為商品化吸附劑。本研究以磷酸鹽配製含磷人工水樣,轉爐石取自中國鋼鐵公司,採批次式實驗比較轉爐石與粒狀氫氧化鐵去除水中磷,實驗操作參數包含水洗、pH、BOF與GFH添加量、磷初始濃度及接觸時間等。此外,以能量散佈分析儀(EDS)與熱游離式掃描式電子顯微鏡(SEM)分別測定BOF與GFH之化學成份組成及表面顯微特性。EDS研究結果顯示BOF化學成份組成Ca之重量百分比為12.6%,於水中會溶出鈣且pH大於11,且與水中磷形成Ca-磷酸鹽沉澱物;隨BOF添加量增加而鈣溶出量增加,亦致使磷去除率增加,BOF去除磷主要機制為沉澱。相對地,GFH化學成份組成不含鈣,主要為鐵氧化物佔重量百分比為63%,GFH去除磷主要機制為吸附於表面形成Fe-磷酸鹽化合物;SEM顯微照相亦顯示GFH吸附磷。由於BOF於水中接觸時間30分鐘時鈣溶出達90%,故BOF去除磷於接觸時間30分鐘後無顯著增加,但GFH去除磷則隨接觸時間增加而增加。BOF磷去除量約為GFH之3-4倍,BOF與GFH去除磷之最適pH分別為11與4,隨磷初始濃度增加BOF與GFH磷去除量隨之增加。此外,GFH售價為BOF之120倍。綜合結果,BOF與GFH去除磷機制分別為沉澱與吸附,BOF之磷去除量與經濟性皆優於GFH。
英文摘要 Basic oxygen furnace steel slag (BOF) is an industry by-product from steel manufacture and is a low-cost adsorbent. Granular ferric hydroxide (GFH) is a commercial available adsorbent. This study compares the adsorption removal of phosphate between BOF and GFH. BOF from The China steel company and phosphate-containing synthetic water were used in this study. The operational parameters included water washed, pH, type and dosage of adsorbent (BOF and GFH), initial concentration of phosphate (P), and contact time. All experiments were conducted by the batch. Furthermore, the chemical composition and surface morphology of adsorbents were examined by energy dispersive spectrum (EDS) and scanning electron microscopy (SEM), respectively.
The results of chemical composition from EDS tests show that BOF contained 12.6% of Ca (wt%), which released Ca ions from the slag into solution to induce high pH levels to above 11. The released Ca ions could react with P to form the precipitation of Ca-phosphate compounds. The released Ca ions concentration increased with the increasing dosage of BOF and leaded to increase removal of P. In contrast, the chemical composition of GFH did not contain Ca but contained 68% (wt %) of Fe. The removal mechanism of P by GFH was predominant by the formation of Fe- phosphate compounds onto GFH surface. The SEM micrographs show that Fe-phosphate compounds formed on the GFH surface. The optimum pH for the removal of P by BOF and GFH was at 11 and 4, respectively. The phosphate removal capacity (PRC) of BOF was about 3-4times of that of GFH. The removal of P increased with the increasing both dosage of BOF and GFH. Original BOF could remove more than 90% of P, whereas it was about 20% for water washed BOF. The removal of P by BOF did not increase significant as contact time extended more than 30 min because more than 90% of dissolution of Ca ions occurred during the contact time less than 30 min. However, the removal of P by GFH increased with the increasing contact time. Moreover, commercial price of GFH was higher as about 120 times of BOF. Overall, the removal mechanism of P by BOF and GFH was precipitation and adsorption, respectively. Based on the PRC and economic feasibility, BOF is a cost-effective adsorbent than GFH for the removal of P.
論文目次 目錄........ I
表目錄....... IV
圖目錄....... V
第一章 前言 1
1-1研究背景 1
1-2研究目的 2
第二章 文獻回顧 3
2-1環境中磷之來源及型態 3
2-1-1磷的來源 3
2-1-2磷的水化學 3
2-1-3磷對環境之危害 5
2-1-4 水中磷之限值 5
2-1-5磷之去除方式 5
2-2磷的吸附 6
2-2-1轉爐石 6
2-2-1-1轉爐石之特性 8
2-2-2粒狀氫氧化鐵(GFH) 9
2-3磷之化學去除技術 10
2-3-1轉爐石去除磷 10
2-3-2其他材料去除磷之方法 11
第三章 實驗材料與方法 13
3-1實驗材料及設備 13
3-1-1含磷人工廢水 13
3-1-2吸附劑 13
3-1-3實驗藥品 13
3-1-4實驗設備 14
3-2轉爐石鈣溶出實驗 15
3-2-1轉爐石於水中鈣溶出 15
3-3 SEM及EDS分析 15
3-4磷去除實驗 16
3-4-1等溫去除實驗 16
3-4-2接觸時間去除實驗 16
3-5水質分析 16
第四章 結果與討論 19
4-1 轉爐石於水中鈣溶出、導電度與pH 19
4-1-1轉爐石添加量對水中鈣溶出、導電度與pH之影響 19
4-1-2轉爐石接觸時間對水中鈣溶出、導電度與pH之影響 21
4-2 磷與鈣化學沉澱 24
4-2-1 磷之基本性質 24
4-2-2磷與磷酸鈣化合物水化學 25
4-2-3鈣添加量對磷去除之影響 26
4-2-4接觸時間對鈣去除磷之影響 27
4-3 轉爐石去除磷 30
4-3-1水洗對轉爐石添加量對磷去除之影響 30
4-3-2轉爐石添加量對磷去除之影響 32
4-3-3接觸時間對轉爐石磷去除之影響 34
4-3-4 pH對轉爐石去除之影響 36
4-4粒狀氫氧化鐵去除磷 38
4-4-1 pH對粒狀氫氧化鐵去除磷之影響 38
4-4-2 粒狀氫氧化鐵添加量對磷去除之影響 41
4-4-3 接觸時間對粒狀氫氧化鐵磷去除之影響 43
4-5轉爐石與粒狀氫氧化鐵磷去除之比較 45
4-5-1 轉爐石與粒狀氫氧化鐵化學組成 45
4-5-2轉爐石與粒狀氫氧化鐵添加量對磷去除之比較 48
4-5-3接觸時間對轉爐石及粒狀氫氧化鐵磷去除比較 50
4-5-4 pH對轉爐石及粒狀氫氧化鐵磷去除比較 51
4-5-5 綜合比較 53
第五章 結論 54
參考文獻 55
表 2-1 常見的無機磷酸鹽化合物 4
表2-2 轉爐石實驗數據整合 10
表2-3 其他除磷之吸附劑 12
表4-1 磷酸鹽與鈣濃度試算表 25
表4-2 轉爐石之元素組成. 46
表4-3 氫氧化鐵吸附前後之元素組成 47
表4-4 轉爐石及氫氧化鐵之綜合比較 53
圖2-1 轉爐石生產流程 7
圖3-1 吸光值與磷濃度之檢量線 17
圖4-1 轉爐石添加量對水中鈣溶出、導電度與pH之影響 20
圖4-2 轉爐石接觸時間對水中鈣溶出之影響 21
圖4-3 轉爐石接觸時間對導電度之影響 22
圖4-4兩小時鈣溶出及導電度之相關性 23
圖4-5 磷酸鹽在不同pH下之形式分佈 24
圖4-6 磷酸鹽與鈣濃度之關係圖 25
圖4-7 鈣添加量對磷殘留率之影響 26
圖4-8 接觸時間對鈣殘留磷之影響 (P = 5 mg/L、pH=10.9-11.1) 28
圖4-9 接觸時間對鈣殘留磷之影響 (P = 10 mg/L、pH=11.3-11.4) 28
圖4-10接觸時間對鈣殘留磷之影響 (P = 20 mg/L、pH=11.1-11.4) 29
圖4-11水洗對轉爐石與GFH添加量對磷去除之影響(P=20 mg/L、30 min) 31
圖4-12 轉爐石添加量對磷殘留率之影響 33
圖4-13 轉爐石添加量對磷去除量之影響 33
圖4-14 轉爐石接觸時間對磷殘留率之影響 (BOF = 200 mg/L、pH=11.2-11.9) 35
圖4-15 轉爐石接觸時間對磷去除量之影響 (BOF = 200 mg/L、pH=11.2-11.9) 35
圖4-16 pH對轉爐石磷去除量之影響 (BOF = 1,000 mg/L、30 min) 37
圖4-17 pH對轉爐石磷去除量之影響 (BOF = 1,000 mg/L、2hr) 37
圖4-18 pH對GFH磷去除量之影響 (GFH = 1,000 mg/L、30min) 39
圖4-19 pH對GFH磷去除量之影響 (GFH = 1,000 mg/L、2hr) 39
圖4-20粒狀氫氧化鐵添加量對磷殘留率之影響 42
圖4-21粒狀氫氧化鐵添加量對去除量之影響 42
圖4-22接觸時間對粒狀氫氧化鐵磷殘留率之影響(GFH=1,000 mg/L、pH=4.1-4.8) 44
圖4-23接觸時間對粒狀氫氧化鐵磷去除量之影響(GFH=1,000 mg/L、pH=4.1-4.8) 44
圖4-24轉爐石之SEM 45
圖4-25粒狀氫氧化鐵吸附前後之SEM 47
圖4-26轉爐石與粒狀氫氧化鐵添加量對磷去除量之比較(P=10 mg/L、2hr) 49
圖4-27轉爐石與粒狀氫氧化鐵最大去除量之比較(P=5、10、20、40 mg/L) 49
圖4-28轉爐石與粒狀氫氧化鐵接觸時間對磷去除量之比較(BOF之pH =11-11.8、GFH之pH =4.5-4.8、2小時、P =10 mg/L) 50
圖4-29 pH對GFH及轉爐石殘留磷之比較 (BOF、GFH = 1,000 mg/L、P =10 mg/L、2hr) 52
圖4-30 pH對轉爐石與粒狀氫氧化鐵磷去除量之比較(BOF及GFH=1,000 mg/L、P= 10 mg/L、2hr) 52

參考文獻 1. 中鋼集團(2003) 爐石利用推廣手冊。
2. 王耀寬(2008) 轉爐石對多孔隙瀝青混擬土之影響,國立成功大學土木工程學系碩士論文。
3. 李敏菱(2011) 利用轉爐石粉料處理含銅廢水之研究,國立台北科技大學資源工程研究所碩士論文。
4. 洪啟昌(2005) 次磷酸溶液處理方法之研究-化學混凝法、吸附法與氧化法,國立成功大學化學工程研究所碩士論文。
5. 郭育宗(2009) 轉爐石去除河水中磷之探討,國立屏東科技大學環境工程與科學系碩士論文。
6. 張鈞維(2006) 以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究,國立成功大學環境工程學系碩士論文。
7. 張信義(2004) 煉鋼爐石去除水中砷及磷之研究,國立屏東科技大學環境工程與科學系碩士論文。
8. 詹詠翔(2009) 養生條件對轉爐石溶出行為之影響,國立成功大學環境工程學系碩士論文。
9. 簡富成(2010) 以轉爐石為人工濕地填充材之功能評估,國立屏東科技大學環境工程與科學系碩士論文。
10. Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andres, Y (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance.Ecological Engineering, 68, 214-222.
11. Barca, C., Troesch, S., Meyer, D., Drissen, P., Andreis, Y., & Chazarenc, F. (2013). Steel slag filters to upgrade phosphorus removal in constructed wetlands: Two years of field experiments. Environmental Science and Technology, 47(1), 549-556.
12. Barca, C., Gerente, C., Meyer, D., Chazarenc, F., & Andres, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in europe. Water Research, 46(7), 2376-2384.
13. Bhatnagar, A., Choi, Y., Yoon, Y., Shin, Y., Jeon, B., & Kang, J. (2009). Bromate removal from water by granular ferric hydroxide (GFH). Journal of Hazardous Materials, 170(1), 134-140.
14. Benjamin, M. M. (2002). Water chemistry McGraw-Hill New York.
15. Bowden, L. I., Jarvis, A. P., Younger, P. L., & Johnson, K. L. (2009). Phosphorus removal from waste waters using basic oxygen steel slag. Environmental Science & Technology, 43(7), 2476-2481.
16. Cha, W., Kim, J., & Choi, H. (2006). Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Research, 40(5), 1034-1042.
17. Claveau-Mallet, D., Wallace, S., & Comeau, Y. (2013). Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Research, 47(4), 1512-1520.
18. Ding, L., Wu, C., Deng, H., & Zhang, X. (2012). Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin. Journal of Colloid and Interface Science, 376(1), 224-232.
19. Drizo, A., Forget, C., Chapuis, R. P., & Comeau, Y. (2006). Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research, 40(8), 1547-1554.
20. Genz, A., Kornmuller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38(16), 3523-3530.
21. Genz, A., Baumgarten, B., Goernitz, M., & Jekel, M. (2008). NOM removal by adsorption onto granular ferric hydroxide: Equilibrium, kinetics, filter and regeneration studies. Water Research, 42(1–2), 238-248.
22. Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials, 156(1–3), 156-162.
23. Kumar, E., Bhatnagar, A., Choi, J., Kumar, U., Min, B., Kim, Y (2010). Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH). Chemical Engineering Journal, 159(1–3), 84-90.
24. Kumar, E., Bhatnagar, A., Ji, M., Jung, W., Lee, S., Kim, S., et al. (2009). Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research, 43(2), 490-498.
25. Li, R., Kelly, C., Keegan, R., Xiao, L., Morrison, L., & Zhan, X. (2013). Phosphorus removal from wastewater using natural pyrrhotite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 427(0), 13-18.
26. Mangwandi, C., Albadarin, A. B., Glocheux, Y., & Walker, G. M. (2014). Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. Journal of Environmental Chemical Engineering, 2(2), 1123-1130.
27. Mustafa, S., Zaman, M. I., & Khan, S. (2008). Temperature effect on the mechanism of phosphate anions sorption by β-MnO2. Chemical Engineering Journal, 141(1–3), 51-57.
28. Peleka, E. N., & Deliyanni, E. A. (2009). Adsorptive removal of phosphates from aqueous solutions. Desalination, 245(1–3), 357-371.
29. Ragheb, S. M. (2013). Phosphate removal from aqueous solution using slag and fly ash. Housing and Budling National Research Center, Journal, 9(3), 270-275.
30. Song, X., Pan, Y., Wu, Q., Cheng, Z., & Ma, W. (2011). Phosphate removal from aqueous solutions by adsorption using ferric sludge. Desalination, 280(1–3), 384-390.
31. Sperlich, A. (2010) Phosphate adsorption onto granular ferric hydroxide (GFH) for wastewater reuse. Doctoral dissertation, Department of environmental technology, Technische Universitat Berlin, Germany.
32. Tang, Y., Guan, X., Wang, J., Gao, N., McPhail, M. R., & Chusuei, C. C. (2009). Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions. Journal of Hazardous Materials, 171(1–3), 774-779.
33. Valsami-Jones, E. (2004). Phosphorus in environmental technologies: Principles and applications IWA Publishing.
34. Wang, H. C., & Guo, J. (2013). Constructing a water quality 2.0 OLAP system in taiwan. Journal of Cleaner Production, 40(0), 40-45.
35. Xiong, J. B., & Mahmood, Q. (2010). Adsorptive removal of phosphate from aqueous media by peat. Desalination, 259(1–3), 59-64.
36. Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., & Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152(1), 211-215.
37. Xiong, J., Qin, Y., Islam, E., Yue, M., & Wang, W. (2011). Phosphate removal from solution using powdered freshwater mussel shells. Desalination, 276(1–3), 317-321.
38. Xue, Y., Hou, H., & Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 162(2), 973-980.
39. Yan, Y., Sun, X., Ma, F., Li, J., Shen, J., Han, W. Removal of phosphate from wastewater using alkaline residue. Chemical Engineering Journal, 137(3), 529-541.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-06-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-06-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信