淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1806201323034300
中文論文名稱 LED照明的電源IC設計和實現
英文論文名稱 Design and Implementation of Power IC for LED Lighting
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 黃朝忠
研究生英文姓名 Chao-Chung Huang
學號 895440112
學位類別 博士
語文別 英文
口試日期 2013-06-01
論文頁數 78頁
口試委員 指導教授-李揚漢
委員-曹恆偉
委員-陳建中
委員-楊清淵
委員-詹益光
委員-李揚漢
委員-蘇木春
委員-許獻聰
中文關鍵字 LED照明 
英文關鍵字 LED Lighting 
學科別分類
中文摘要 在重視環保及節省能源的時代,現在各國開始廣泛使用LED 燈具, 像LED燈泡,LED 燈管和LED路燈都是使用白光LED當作光源,由於各國使用的輸入電壓皆不相同,因此在製作時需要能夠廣泛應用於各種電壓的白光 LED驅動器就極為重要。
我們介紹研究動機和本論文的結構。首先提出超高壓電壓穩壓器的設計和實現,當使用8V~110V的輸入電壓時,可以產生穩定的6.5V輸出電壓。
具有線電壓補償的白光LED驅動電路的設計和實現,當輸入電壓為110Vac 或220Vac經過整流後的電源時,LED驅動電路可以直接降壓為7V提供給內部控制電路使用,利用外部的電阻偵測LED的電流,使LED 電流可以穩定在395mA,由於電壓需要可以使用在110Vac或220Vac,設計一個針對輸入電壓變異的補償電路,使LED驅動電路在輸入電壓變異大時也能提供LED流過穩定的電流,減少LED平均電流的變異。
LED驅動電路使用模糊控制設計,模糊控制不需要複雜的數學計算,可以利用經驗法則設計出控制方法,使用siumlink設計及模擬LED照明控制系統。最後為結論及未來的研究方向。
英文摘要 In an age where environmental protection and power conservation are prioritized, countries worldwide have begun to employ light-emitting diodes (LEDs) for a wide range of applications. LED bulbs, tubes, and street lights use white LEDs as the light sources. Because input voltage sources used vary in different countries, manufacturing a white LED driver that can be applied to various voltage sources is extremely important.
The motivation of this thesis study and the organization of this thesis are introduced. The design and the implementation of an ultrahigh voltage (UHV) regulator are first introduced that it can generate a stable 6.5 V output voltage when the input voltage operates in 8~110 V range.
A white LED controller with line compensation capability is designed and fabricated. This integrated circuit (IC) is designed when the input voltage is operated at 110 V or 220 V. In the IC design of this controller circuit a step-down circuit is implemented to convert a given input voltage down to 7 V. An external resistor is included in this IC to detect and maintain the current flowing through the LED at 395 mA. Because the current flowing through an LED lamp needed to be maintained within a small variation range at either 110 or 220 V input voltage, a line compensation circuit is implemented. Since the input voltage has a wide variation range a compensation circuit is designed and exploited to compensate for any input voltage variation and consequently to reduce the possible variation of the average current across the LED.
The LED lighting is also processed with fuzzy control. Using fuzzy control in the design of LED controller it is not necessary to implement the conventional complicate mathematical operation instead it uses the empirical knowledge of the control process in the decision criterion. It uses the Simulink program to design and simulate the LED lighting control system.
Finally a conclusion of the dissertation is made and some interesting tasks are proposed for future study.
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT..................................... I
ENGLISH ABSTRACT..................................... II
TABLE OF CONTENTS.................................... IV
LIST OF FIGURES...................................... VI
LIST OF TABLES....................................... IX
CHAPTER 1 INTRODUCTION....................... 1
1.1 Study Motivation............................ 1
1.2 Organization................................ 2
CHAPTER 2 DESIGN OF ULTRA HIGH VOLTAGE REGULATOR. 5
2.1 Introduction................................ 5
2.2 CIRCUIT DESIGN.............................. 7
2.2.1 Bandgap Voltage Reference Circuit........... 7
2.2.2 Operational Amplifier....................... 13
2.2.3 Bias Circuit................................ 18
2.2.4 Ultra High Voltage Regulator Circuit........ 20
2.3 Voltage Regulator Measurement Results....... 21
CHAPTER 3 LED CONTROLLER DESIGN AND IMPLEMENTATION FOR LED LIGHTING..................................... 23
3.1 Introduction................................ 23
3.2 CIRCUIT DESIGN.............................. 25
3.2.1 Bandgap Voltage Reference Circuit........... 25
3.2.2 Voltage Regulation Circuit.................. 28
3.2.3 Oscillator Circuit.......................... 31
3.2.4 Current Sensing Circuit..................... 32
3.2.5 Line Compensation Circuit................... 33
3.2.6 Driver Circuit.............................. 38
3.3 Circuit Layout.............................. 40
3.4 Measured Results............................ 40
CHAPTER 4 LED LIGHTING WITH FUZZY CONTROL.... 44
4.1 Introduction................................ 44
4.2 Proposed design............................. 45
4.2.1 Fuzzy logic control......................... 49
4.3 Simulation Results.......................... 57
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS....... 67
REFERENCES........................................... 69

LIST OF FIGURES
Figure 1-1 (a) LED Bulb (b) LED Tube................. 2
Figure 1-2 The Organization of Chapter Dissertation.. 4
Figure 2-1 The architecture of the LDO............... 6
Figure 2-2 The pass element structures............... 7
Figure 2-3 The VBE curve with temperature variation.. 8
Figure 2-4 The operation of the bandgap circuit...... 8
Figure 2-5 A conventional CMOS bandgap circuit....... 10
Figure 2-6 The proposed Bandgap circuit.............. 11
Figure 2-7 The Vref curve with temperature variation. 12
Figure 2-8 The Vref curve with VDD variation......... 12
Figure 2-9 (a) Folded cascode operational amplifier (b) two stage operational amplifier (c) telescopic operational amplifier............................................ 14
Figure 2-10 wide-swing folded cascode operational amplifier............................................16
Figure 2-11 (a) Cascode current mirror and (b) wide-swing cascode current mirror............................... 16
Figure 2-12 The simulated frequency response of the operational amplifier................................ 18
Figure 2-13 Bias circuit (a) three MOSFET voltage divider. (b) Threshold reference self-biasing circuit. (c) Beta multiplier referenced self-biasing circuit........... 19
Figure 2-14 The proposed wide swing cascode bias circuit.............................................. 20
Figure 2-15 output voltage (Vout) versus temperature. 22
Figure 2-16 input voltage (Vin) versus output voltage (Vout)............................................... 22

Figure 3-1 LED lighting application circuit.......... 24
Figure 3-2 Function block of LED controller.......... 25
Figure 3-3 Bandgap Voltage Reference Circuit......... 27
Figure 3-4 Voltage Regulation Circuit................ 29
Figure 3-5 Input voltage (Vin) versus output voltage (VDD)................................................ 30
Figure 3-6 Temperature versus output voltage (VDD)... 30
Figure 3-7 Oscillator Circuit........................ 31
Figure 3-8 Simulation result of Oscillator Circuit... 32
Figure 3-9 Current Sensing Circuit................... 33
Figure 3-10 Line Compensation Circuit................ 35
Figure 3-11 Switching frequency of LED lighting system (VIN=85Vac )......................................... 36
Figure 3-12 Switching frequency of LED lighting system (VIN=265Vac )........................................ 37
Figure 3-13 Simulation result of LED current (ILED) (a) LED current without Line Compensation Circuit, (b) LED current with Line Compensation Circuit....................... 37
Figure 3-14 Simulation result of LED current (ILED) with three corner......................................... 38
Figure 3-15 Driver Circuit........................... 38
Figure 3-16 simulation result of GATE pin............ 39
Figure 3-17 The photographic layout of White LED Controller chip................................................. 40
Figure 3-18 Reference voltage (V02) versus temperature.......................................... 41
Figure 3-19 Input voltage (VIN) versus LED current (ILED)............................................... 42
Figure 3-20 Waveforms measured at the GATE pin of the load current ILED, with the input voltage connected to the VIN pin: (a) rectified 85 VAC signal used as the input voltage; and (b) rectified 265 VAC signal used as the input voltage.............................................. 43
Figure 4-1 LED lighting system with fuzzy control.... 45
Figure 4-2 Proposed LED Lighting System.............. 46
Figure 4-3 Switch Function of the Proposed LED Lighting System............................................... 47
Figure 4-4 Simulink Diagram of the Proposed Fuzzy Control System............................................... 48
Figure 4-5 Overview of Fuzzy Logic Procedure......... 49
Figure 4-6 (a) Membership Functions of the Input Signal vcs; (b) Membership Functions of the Input Signal s; (c) Membership Functions of the Output vfuzzy with type 1; (d) Membership Functions of the Output vfuzzy with type 2; (e) Membership Functions of the Output vfuzzy with type 3 53
Figure 4-7 3D Surface Viewer of the Fuzzy Control.... 55
Figure 4-8 FIS Setup of Simulink..................... 56
Figure 4-9(a) Simulation Result of type1 parameter; (b) Simulation Result of type2 parameter; (c) Simulation Result of type3 parameter................................... 57
Figure 4-10 Simulation Result of 3 LEDs system....... 59
Figure 4-11 Simulation Result of LED current (3 LEDs) 60
Figure 4-11 Switching frequency of 3 LEDs system..... 62
Figure 4-13 Simulation Result of 12 LEDs system...... 63
Figure 4-14 Simulation Result of LED current (12 LEDs)................................................ 64
Figure 4-15 Switching frequency of 12 LEDs system.... 66

LIST OF TABLES
Table 2-1 Performance comparison of op-amp topologies.15
Table 3-1 Performance summary of designed White LED Controller chip...................................... 43
Table 4-1 Fuzzy Rule Base of type1 with Two Input and Single Output........................................ 54
Table 4-2 Fuzzy Rule Base of type3 with Two Input and Single Output........................................ 55
參考文獻 [1] http://www.ledinside.com.tw/outlook/20130226-25232.html
[2] Chia-Min Chen, Chung-Chih Hung, “A Capacitor-free CMOS Low-dropout Voltage Regulator,” Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium, May. 2009, pp. 2525-2528.
[3] C. L. Chen, W. J. Huang and S. I. Liu, “CMOS Low Dropout Regulator with Dynamic Zero Compensation,” Electronics Letters, Vol. 43 No. 14, 5th July 2007.
[4] G. A. Rincon-Mora, “Active Capacitor Multiplier in Miller-Compensated Circuits,” IEEE Transactions on Solid-State Circuits, Vol. 35, No. 1, Jan. 2000, pp. 26-32.
[5] G. A. Rincon-Mora and P. E. Allen “A Low Voltage, Low Quiescent Current, Low-dropout Regulator,” IEEE J. Solid-state Circuits, Vol. 33, Jan. 1998, pp.36-44.
[6] Hsuan-I Pan, Chin-Hung Cheng, Chern-Lin Chen, Ta-yung Yang, “A CMOS Low Dropout Regulator Stable with Any Load Capacitor,” TENCON 2004. 2004 IEEE Region 10 Conference, Vol. 4, Nov. 2004, pp. 266 – 269.
[7] Min Tan, “A Zero-ESR Stable Adaptively Biased Low-dropout Regulator in Standard CMOS Technology,” ASIC, 2009. Asicon'09. IEEE 8th International Conference, Oct. 2009, pp. 1185-1188.
[8] Shopan din Ahmad Hafiz, Md. Shafiullah, Shamsul Azam Chowdhury, “Design of a Simple CMOS Bandgap Reference,” International Journal of Electrical & Computer Sciences IJECS-IJENS, 2010, pp. 06-09,
[9] S. K. Hoon, S. Chen, F. Maloberti, J. Chen, and B. Aravind, “A Low Noise, High Power Supply Rejection Low Dropout Regulator for Wireless System-on-Chip Applications,” in Proc. IEEE Custom Integr. Circuits Conf., Sept. 2005, pp. 759-762.
[10] S. Miller and L. MacEachern, “A Nanowatt Bandgap Voltage Reference for Ultra-low Power Applications,” presented at Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, 2006. pp. 644-648.
[11] Behzad Razavi, Design of analog CMOS integrated circuit, New York: McGraw-Hill, 2001.
[12] R. Dehqhani and S. Atarodi, “A New Low Voltage Precision CMOS Current Reference with No External Components,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 50, Dec. 2003, pp. 928-932.
[13] R. Jacob Baker, Harry W. Li and David E. Boyce, “CMOS Circuit Design, Layout, and Simulation,” International Edition 1998.
[14] Samad Sheikhaei, Shahriar Mirabbasi, and Andre Ivanov, “A 0.35μm CMOS Comparator Circuit for High-Speed ADC Applications,” Circuits and Systems, 2005, pp. 6134-6137.
[15] K. T. Lim, S. J. Kim, and O. K. Kwon, “The OP-amplifier with Offset Cancellation Circuit,” Electron Devices and Solid-State Circuits, 2003 IEEE Conference, pp. 445-447.
[16] L. Ka Nang and P. K. T. Mok, “A Sub-1-V 15- ppm/℃ CMOS Bandgap Voltage Reference without Requiring Low Threshold Voltage Device,” Solid-State Circuits, Vol. 37, 2002, pp. 526-530.
[17] Maxim Pribytko, Patrick Quinn, “A CMOS Single-Ended OTA with High CMRR,” Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European, 2003, pp. 293-296.
[18] Phillip E. Allen and Douglas R. Holberg, CMOS analog circuit design, New York: Oxford University Press, 2002.
[19] A. Arnaud and C. Galup-Montoro, “Pico-A/V Range CMOS Transconductors Using Series-parallel Current Division,” Electronics Letters, Vol. 39, Issue:18, 4 Sept. 2003, pp. 1295-1296.
[20] Curtis Cahoon and R. Jacob Baker, “Low-Voltage CMOS Temperature Sensor Design Using Schottky Diode-Based References,” Microelectronics and Electron Devices, April 2008, pp. 16-19.
[21] G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutri, “A Low-voltage Low-power Voltage Reference Based on Subthreshold MOSFETs,” Solid-State Circuits, IEEE Journal, Vol. 38, Jan 2003, pp. 151-154.
[22] C.C. Enz, E.A. Vittoz and F. Krummenacher, “A CMOS Chopper amplifier”, IEEE J. Solid-State Circuits, Vol SC-22, June 1987, pp. 335-342.
[23] H. Onodera, H. Kanbara, and K. Tamaru, “Operational Amplifier Compilation with Performance Optimization,” IEEE Journal of Solid-State Circuits, April 1990, pp. 466-473.
[24] Michael Trakimas and Sameer Sonkusale, “A 0.5V Bulk-Input Operational Transconductance Amplifier with Improved Common-Mode Feedback,” Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium, 2007, pp. 2224-2227.
[25] P. K. Chan, L. Siek, H. C. Tay and J. H. Su, “A Low-offset Class-AB CMOS Operational Amplifier,” in Proceed-ings, The 2000 IEEE International Symposium on Circuits and Systems, pp. 455-458.
[26] Hoi Lee, and Philip K. T. Mok, “Active-Feedback Frequency-Compensation Technique for Low-Power Multistage Amplifiers,” Solid-State Circuits, Mar 2003, pp. 511-520.
[27] P. J. Holzmann, R. J. Wiegerink, S. L. J. Gierkink, R. F. Wassenaar, and P. Stroet, “A Low-offset Low-voltage CMOS op amp with rail-to-rail input and output ranges,” IEEE International Symposium on Circuits and Systems, 1996, pp. 179-182.
[28] J. Doyle, Y. J. Lee, Y. B. Kim, H. Wilsch, and F. Lombardi, “A CMOS Subbandgap Reference Circuit with 1V Power Supply Voltage,” Solid-State Circuits, Vol. 39, Jan. 2004, pp. 252-255.
[29] J. Rabaey, Digital Integrated Circuits-A Design Perspective, 2nd Edition, Pearson Education, 2003.
[30] Joao Ramos, M. S. J. Steyaert, “Positive Feedback Frequency Compensation for Low-Voltage Low-Power Three-Stage Amplifier,” IEEE Transaction on Circuits and Systems, Vol. 51, No. 10, Oct. 2004, pp. 1967-1974.
[31] Jin-Yong Zhang, Lei Wang, Bin Li, “Design of Low-offset Low-power CMOS Amplifier for Biosensor Application,” J. Biomedical Science and Engineering, 2009, pp. 538-542.
[32] Jirong Ma, Yongming Li, Chun Zhang, Zhihua Wang, “A 1V Ultra-Low Power High Precision CMOS Voltage Reference,” Electron Devices and Solid-State Circuits, Dec. 2007 pp. 847 – 850.
[33] A. Arbat, A. Dieguez and J. Samitier, “An Improved Temperature Compensation Technique for Current Biasing,” Circuits and Systems, ISCAS 2007. IEEE International Symposium, May 2007, pp. 1923-1926.
[34] http://allenluadvance.blogspot.com/2009/04/ldo-regulator.html
[35] Texas Instruments, “Technical Review of Low Dropout Voltage Regulator Operation and Performance,” 1999, pp. 7-9.
[36] K.T. Veeder, A. Becker-Gomez, “Ultra-low Constant-current Generation with MOS Interface-trap Charge Pump,” Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on, Vol. 1, 2002, pp. 275-278.
[37] W. J. Huang, S. H. Lu, and S. L. Liu, “A Capacitor-free CMOS Low Dropout Regulator with Slew Rate Enhancement,” in Proc. of VLSI Design, Automation and Test, 2006, pp. 1-4.
[38] W. J. Huang, S. H. Lu and S. I. Liu, “CMOS Low Dropout Linear Regulator with Single Miller Capacitor,” Electronics Letters, Vol. 42 No. 4, 16th February 2006.
[39] Chao-Jui Liang, Chiu-Chiao Chung, Hongchin Lin, “A Low-voltage Band-gap Reference Circuit with Second-order Analyses,” International Journal of Circuit Theory and Applications, 2010.
[40] Ka Nang Leung, Philip K. T. Mok, Wing-Hung Ki, and Johnny K. O. Sin, “Three-Stage Large Capacitive Load Amplifier with Damping-Factor-Control Frequency Compensation,” IEEE Transactions on Solid-State Circuits, Vol. 35, No. 2, Feb. 2000, pp. 221-230.
[41] Kae Wong and David Evans, “A 150mA Low Noise, High PSRR Low-Dropout Linear Regulator in 0.13μm Technology for RF SoC Applications,” Solid-State Circuits Conference, Sept. 2006, pp. 532-535.
[42] Kent H. Lundberg, “Internal and External Op-Amp Compensation: A Control-Centric Tutorial,” American Control Conference, June 30 2004-July 2 2004, Vol.6, pp. 5197-5211
[43] Hironori Banba, Hitoshi Shiga, Akira Umezawa, Takeshi Miyaba, “A CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, May 1999, pp. 670-674.
[44] M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei, “A Novel Frequency Compensation Technique for Two-stage CMOS Operational Amplifiers,” Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th IEEE International Conference, Dec. 2003, pp. 14-17.
[45] V. Saxena and R.J. Baker, “Indirect Compensation Technique for Low-Voltage Op-Amps,” proceedings of the 3rd Annual Austin Conference on Integrated Systems and Circuits (ACISC), May 7-9, 2008.
[46] Sudhir M. Mallya, Joseph H. Nevin, “Design Procedures for a Fully Differential Folded-Cascode CMOS Operational Amplifier,” IEEE Journal of Solid-Statecircujts, Vol. 24, No. 6, Dec. 1989.
[47] Yueming Jiang and Edward K. F. Lee, “Design of Low-Voltage Bandgap Reference Using Transimpedance Amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 47, No. 6, JUNE 2000
[48] Nicodimus Retdian, Shigetaka Takagi and Nobuo Fujii, “Voltage Controlled Ring Oscillator with Wide Tuning Range Fast Voltage Swing” IEEE Trans. on Microwave Theory Tech., Vol. 50, No. 1, Jan. 2002, pp. 201-204.
[49] Takeshi Shima and Koujirou Miyoshi, “Simple and Accurate Comparator Circuit,” Circuits and Systems, 2002, pp. 299-302.
[50] L. Angel, Morales, Jem A. Rongong and Neil D. Sims, “A Fuzzy Finite Element Method Programmed in MATLAB for the Analysis of Uncertain Control Systems of Structures,” Matlab-A Ubiquitous Tool for the Practical Engineer, Oct. 2011, pp. 291-301.
[51] A.R. ZADE, D. R. DANDEKAR, “Simulation of Adaptive Traffic Signal Controller in MATLAB Simulink Based On Fuzzy Inference System,” National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012) Proceedings published by International Journal of Computer Applications (IJCA), pp. 9-13
[52] Behrouz Safarinejadian and Farzaneh Jafartabar, “Hybrid Fuzzy Logic Controllers for Buck Converter,” International Conference on Artificial Intelligence and Image Processing (ICAIIP'2012), Oct. 2012, pp. 197-201.
[53] Dr. T. Govindaraj, Rasila R, “Development of Fuzzy Logic Controller for DC – DC Buck Converters,” Int J Engg Techsci, Vol 2(2), 2011, pp. 192-198.
[54] G. Balasubramanian1 and S. Singaravelu, “Fuzzy Logic Based Controller for a Stand-alone Hybrid Generation System Using Wind and Photovoltaic Energy,” International Journal of Advances in Engineering & Technology, May 2012, pp. 668-679.
[55] Masoud Aliakbar GOLKAR, Amin HAJIZADEH, “Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation,” Golkar et al./J Zhejiang Univ Sci A, 2009, pp. 488-496.
[56] M. Bayati Poodeh, S. Eehtehardiha, M. R. ZARE, “Application of Fuzzy Logic to Control the DC-DC Converter,” 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Nov. 2007, pp. 34-39.
[57] Mohamed Salhi1 and Rachid El-Bachtri, “Maximum Power Point Tracker using Fuzzy Control for Photovoltaic System,” International Journal of Research and Reviews in Electrical and Computer Engineering (IJRRECE) Vol. 1, No. 2, June 2011, pp.69-75.
[58] Mohamed Salhi, Rachid El-Bachtiri, “A Maximum Power Point Tracking Photovoltaic System using a Proportional Integral Regulator,” Science Academy Transactions on Renewable Energy Systems Engineering and Technology (SATRESET), June 2011, pp. 37-44.
[59] P. Kirawanich, Robert M. OConnell, “Fuzzy Logic Control of an Active Power Line Conditioner,” IEEE Transactions on Power Electronics, Vol. 19, No. 6, Nov. 2004.
[60] A. Rameshkumar and S. Arumugam, “Design and Simulation of Fuzzy Controlled Quasi Resonant Buck Converter,” ARPN Journal of Engineering and Applied Sciences, Vol. 4, No. 5, July 2009, pp. 91-100.
[61] Boumediène Allaoua and Abdellah LAOUFI, “Application of a Robust Fuzzy Sliding Mode Controller Synthesis on a Buck-Boost DC-DC Converter Power Supply for an Electric Vehicle Propulsion System.” Journal of Electrical Engineering & Technology, Vol. 6, No. 1, 2011, pp. 67-75.
[62] H. Feshki Farahani, “Designing and Implementation of a Fuzzy Controller for DC-DC Converters and Comparing with PI Digital Controller,” Australian Journal of Basic and Applied Sciences, 2011, pp. 276-285.
[63] Kamyar Mehran, Damian Giaouris, Bashar Zahawi, “Modeling and Stability Analysis of DC-DC Buck Converter via Takagi-Sugeno Fuzzy Approach,” Intelligent System and Knowledge Engineering, 2008, pp. 401-406.
[64] K.V. Hari Prasad, CH. Uma Maheswar Rao and A. Sri Hari, “Design and Simulation of a Fuzzy logic Controller for Buck and Boost Converters,” International Journal of Advanced Technology & Engineering Research (IJATER), May 2012, pp 218-224.
[65] K.H. Chua, W.P. Hew, C.P. Ooi, C.Y. Foo and K.S. Lai, “A Comparative Analysis of PI, Fuzzy Logic and ANFIS Speed Control of Permanent Magnet Synchronous Motor,” Int. J. of Electrical, Electronic Engineering and Technology, Vol. 1, 2011, pp. 10-22.
[66] Ping-Zong Lin, Chun-Fei Hsu, Tsu-Tian Lee, “Type-2 Fuzzy Logic Controller Design for Buck DC-DC Converters,” The 2005 IEEE International Conference on Fuzzy Systems, 25-25 May 2005, pp. 365-370.
[67] P. Rathika and D. Devaraj, “Fuzzy Logic Based Approach for Adaptive Hysteresis Band and DC Voltage Control in Shunt Active Filter,” International Journal of Computer and Electrical Engineering, Vol. 2, No. 3, June, 2010.
[68] S. Arulselvi, Uma Govindarajan and V. Saminath, “Development of Simple Fuzzy Logic Controller (SFLC) for ZVS Quasi-resonant Converter: Design, Simulation and Experimentation,” J. Indian Inst. Sci., June 2006, pp. 215–233.
[69] Seno D. Panjaitan and Aryanto Hartoyo, “A Lighting Control System in Buildings based on Fuzzy Logic,” Telkomnika, Vol.9, No.3, December 2011, pp. 423-432.
[70] Yigang Shi and P.C. Sen, “A New Defuzzification Method for Fuzzy Control of Power Converters,” Industry Applications Conference, Vol. 2, 2000, pp. 1202-1209.
[71] Y.R. Yang, “A Fuzzy Logic Controller for Maximum Power Point Tracking with 8-Bit Microcontroller,” Journal of Energy and Power Engineering, 2011, pp. 1078-1086.
[72] Yueh-Ru Yang, “Brightness Control of LED Lamps Using Fuzzy Logic Controllers,” Industrial Electronics and Applications (ICIEA), 2010 the 5th IEEE Conference, pp. 1957-1962.
[73] A.H. Bhat and P. Agarwal, ”A Fuzzy Logic Controlled Three-Phase Neutralpoint Clamped Bidirectional PFC Rectifier,” IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), Dec. 20-22, 2007, pp. 238-244.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信