§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1806201311265100
DOI 10.6846/TKU.2013.00656
論文名稱(中文) 比較高壓與常壓好氧顆粒污泥程序
論文名稱(英文) Comparison of high pressure and ambient pressure aerobic granulation processes.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 梁洋銘
研究生(英文) yang-min liang
學號 895480050
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2013-06-03
論文頁數 99頁
口試委員 指導教授 - 李奇旺
委員 - 李篤中
委員 - 陳孝行
委員 - 康世芳
委員 - 李柏青
關鍵字(中) 高壓
顆粒污泥
有機負荷
硝化
關鍵字(英) High pressure
granulation
organic loading
nitrification
第三語言關鍵字
學科別分類
中文摘要
由於顆粒大小的原因,限制基質與氧氣進入顆粒中心,使顆粒中心因基質與氧氣不足而發生厭氧分解,導致顆粒崩解。系統之穩定性問題,是好氧顆粒污泥實際應用的主要障礙。在高溶氧狀態下,氧氣穿透顆粒的深度也愈深,根據亨利定律,水中溶氧會隨壓力增加而上升;因此,操作在高壓環境下之顆粒污泥的形成與穩定性應會優於操作在常壓環境下。
實驗結果顯示,操作在高壓環境下可促進顆粒污泥的形成。常壓顆粒污泥的尺寸與MLSS濃度皆大於高壓顆粒污泥,但是常壓系統之出流水的SS高於高壓系統,這是由於常壓系統仍含有大量的污泥膠羽所造成的。高壓系統有較長的污泥停留時間及較低的污泥增值率,即污泥量會比較少,可降低後續的污泥處理費用。
    高壓系統可操作在較高的NLR,完全硝化用作在高壓系統較早達到,顯示HP環境可促進NOB菌群的生長。高壓顆粒污泥之(SOUR)h、(SOUR)NH4及(SOUR)NO2皆優於常壓顆粒污泥,但由於顆粒較小,對FA及FNA濃度的變化更為敏感。
英文摘要
Due to granule size, substrate and oxygen become limited in the core of granules leading to cell lysis at the core. Loss of granule stability is still a major barrier for practical application of AG. The higher the DO, the deeper the oxygen penetration inside AG. According to Henry's Law, DO increases with increasing oxygen pressure in gas phase. Compared to ambient pressure condition (AP), operation of AG under high pressure (HP) might a favorable condition for formation and stability of granules.
Experimental results show that granulation was facilitated under HP condition. MLSS and size of granules under AP system are higher than those under HP system. However, SS of effluent in AP is higher than those in HP and is consisted mainly with flocculent sludge. Longer SRT and lower biomass yield are obtained in HP system, indicating that less sludge will be produced in HP system. 
HP system can operate at high nitrogen loading. Complete nitrification was observed earlier in HP, indicating that the growth of NOB was facilitated under high dissolved oxygen. The (SOUR)h,(SOUR)NH4 and (SOUR)NO2 of HP sludge are better than of AP sludge. However, HP sludge is more sensitive to changes of FA and FNA concentrations due to smaller granule size.
第三語言摘要
論文目次
目錄	V
List of Figure	VIII
List of Table	XIII
第一章	研究緣起	1
1.1	研究背景	1
1.2	研究目的	2
第二章	文獻回顧	3
2.1	好氧顆粒	3
2.2	影響顆粒污泥形成的因素	5
2.2.1	飢餓期	5
2.2.2	植種污泥來源	5
2.2.3	基質組成	6
2.2.4	有機負荷率(OLR)	7
2.2.5	鈣鎂離子之影響	8
2.2.6	pH之影響	9
2.2.7	溫度之影響	9
2.2.8	選擇壓力(selection pressure)	10
2.2.9	剪力	11
2.2.10	溶氧	12
2.3	顆粒污泥之EPS及細胞活性分佈	14
2.4	AGMBR之應用	16
2.5	生物去氮除磷技術	17
2.5.1	硝化作用	17
2.5.2	脫硝作用	18
2.5.3	除磷作用	18
2.5.4	好氧顆粒應用於硝化程序	19
2.5.5	好氧顆粒應用於硝化脫硝程序	20
2.5.6	好氧顆粒應用於脫氮除磷程序	21
2.6	好氧顆粒於高壓環境下培養	23
2.6.1	高壓環境下的溶氧濃度	23
2.6.2	不同OLR在高壓(HP)與常壓(AP)下顆粒污泥的形成	24
第三章	實驗方法	29
3.1	反應槽設計與操作流程	29
3.2	EPS分析	32
3.2.1	蛋白檢測分析	32
3.2.2	醣類檢測分析	33
3.3	掃描式電子顯微鏡(SEM)分析	34
3.4	總有機碳(TOC)	34
3.5	顆粒之EPS種類分佈分析	35
3.5.1	染色步驟	35
3.6	HP及AP顆粒污泥之比攝氧率分析(Specific oxygen utilization rate, SOUR)	36
3.7	HP及AP系統之攝氧率分析(Oxygen utilization rate, OUR)	36
3.8	水中MLSS及SS檢測方法	37
3.9	水中NO2--N及NO3--N檢測方法	37
3.10	水中NH4+-N檢測方法	38
3.11	污泥停留時間與污泥增值係數計算	39
第四章	結果與討論	41
4.1	比較顆粒污泥操作在高壓與常壓下的特性	41
4.1.1	系統處理效率	42
4.1.2	顆粒污泥之特性	45
4.1.3	顆粒污泥之大小分布	48
4.1.4	顆粒污泥之EPS特性與組成	50
4.1.5	螢光顯微鏡(CLSM)與電子顯微鏡(SEM)分析	52
4.2	比較高壓與常壓顆粒污泥的硝化效率	56
4.2.1	系統處理效率	56
4.2.2	NH4+-N降解曲線	60
4.2.3	硝化顆粒污泥之特性	68
4.2.4	硝化顆粒污泥之粒徑分布	70
4.2.5	硝化顆粒污泥之EPS特性與組成	71
4.2.6	電子顯微鏡(SEM)分析及顆粒照片	73
4.3	顆粒污泥之比攝氧率	75
4.3.1	HP及AP系統之DO濃度變化	75
4.3.2	HP及AP系統之攝氧率及污泥之比攝氧率變化	76
4.3.3	比較HP及AP系統之(SOUR)h、(SOUR)NH4及(SOUR)NO2	78
4.3.4	pH及NH3-N濃度對HP及AP污泥之(SOUR)NH4的影響	80
4.3.5	pH及HNO2-N濃度對HP及AP污泥之(SOUR)NO2的影響	84
第五章結論	86
參考文獻	88
List of Figure
Figure 1. Proposed mechanism of aerobic granulation by Beun et al. [22].	4
Figure 2. Light microscopy images of granules at organic loading rates of (a) 1, (bB) 2, (c) 4, and (d) 8 kgCOD/m3 day form Tay et al. [49].	8
Figure 3. Light microscopy images of granules after operating times of: (e) 50 days; and (f) 75 days, form Wang et al. [50].	8
Figure 4. DO concentration in the reactor with different aeration cycles [17].	24
Figure 5. MLSS and SVI30, MLSS, COD removal efficiency, and SS as a function of operation time for HP and AP systems operated at various OLR [126].	27
Figure 6. Ratio of granular sludge and strength of granule [126].	28
Figure 7. PS/PN for HP and AP systems operated at various OLR [126].	28
Figure 8. (A) high pressure system and (B) ambient pressure system.	30
Figure 9. Operation sequence for a two-hour cycle.	31
Figure 10. The calibration curve of PN concentration measured by Bradford method.	33
Figure 11. The calibration curve of PS concentration measured by phenol-sulfuric acid method.	34
Figure 12. The calibration curve of NO2--N concentration measured by FIA.	38
Figure 13. The calibration curve of NO3--N concentration measured by FIA.	38
Figure 14. The calibration curve of NH4+-N concentration measured by FIA.	39
Figure 15. TOC as a function of operation time for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d.	43
Figure 16. Profile of TOC concentration in mixed liquor at TOC loading of 3.3~3.6 kg /m3-d for HP and AP systems.	43
Figure 17. Effluent SS as a function of operation time for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d.	44
Figure 18. MLSS and SVI30 as a function of operation time for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d.	46
Figure 19. SVI30/SVI5 as a function of operation time for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d.	47
Figure 20. Particle size distribution of granules less than 600 μm for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d. Samples were taken at day 55.	49
Figure 21. PS/PN for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d.	50
Figure 22. EPS for HP and AP systems operated at TOC loading of 3.3~3.6 kg /m3-d.	51
Figure 23. CLSM images of HP granule. Bar=200 μm. (A) proteins (FITC), (B) α-polysaccharides (Con A), (C) β-polysaccharides (Calcofluor white), (D) total cells (SYTO63), (E) dead cells (Sytox Blue), (F) phase contrast photograph (G) combined image of individual images in A-F. Samples were taken at day 89.	53
Figure 24. CLSM images of AP granule at day . Bar=200 μm. (A) proteins (FITC), (B) α-polysaccharides (Con A), (C) β-polysaccharides (Calcofluor white), (D) total cells (SYTO63), (E) dead cells (Sytox Blue), (F) phase contrast photograph (G) combined image of individual images in A-F. Samples were taken at day 89.	54
Figure 25. SEM images of HP and AP granule at day 115. (A) (B) HP, (C) (D) AP.	55
Figure 26. Effluent quality of HP system during phase II.	58
Figure 27. Effluent quality of AP system during phase II.	58
Figure 28. Profile of NH4+-N, NO2--N and NO3--N concentration in mixed liquor for HP and AP systems operated at NLR of 0.9 kg /m3-d (influent NH4+-N=150 mg/L). Samples were taken at day 298.	61
Figure 29. Profile of NH4+-N, NO2--N and NO3--N concentration in mixed liquor for HP and AP systems operated at NLR of 1.8 kg /m3-d (influent NH4+-N=300 mg/L). Samples were taken at day 202.	62
Figure 30. Profile of NH4+-N, NO2--N and NO3--N concentration in mixed liquor for HP and AP systems operated at NLR of 2.7 kg /m3-d (influent NH4+-N=450 mg/L). Samples were taken at day 227.	62
Figure 31. Profile of NH4+-N, NO2--N and NO3--N concentration in mixed liquor for HP and AP systems operated at NLR of 3.6 kg /m3-d (influent NH4+-N=600 mg/L). Samples were taken at day 257.	63
Figure 32. MLSS and SVI30 as a function of operation time for HP and AP systems during phase II.	69
Figure 33. SVI30/SVI5 as a function of operation time for HP and AP systems during phase II.	69
Figure 34. Particle size distribution of granules less than 600 μm for HP and AP systems. Samples were taken at day 150.	70
Figure 35. EPS as a function of operation time for HP and AP systems during phase II.	72
Figure 36. PS/PN as a function of operation time for HP and AP systems during phase II.	72
Figure 37. SEM images of HP and AP granule at day 225. (A) (B) HP, (C) (D)AP.	73
Figure 38. The photos of sludge under (A) AP and(B) HP systems took after 300 days of operation.	74
Figure 39. Measured cycle profiles of DO concentration during one cycle of HP and AP systems at S5.	75
Figure 40. Measured cycle profiles of OUR during one cycle of HP and AP systems at S5.	77
Figure 41. Measured cycle profiles of SOUR during one cycle of HP and AP granules at S5.	77
Figure 42. Heterotrophic and nitrifying activities in microbial granules under HP and AP systems. (SOUR)NH4 : specific oxygen utilization rate by ammonia oxidizer; (SOUR)NO2 : specific oxygen utilization rate by nitrite oxidizer; (SOUR)h: specific oxygen utilization rate by heterotrophs. Samples were taken at day 325.	79
Figure 43. The effect of pH for FA at 150 mg NH4+-N /L and FNA at 200 mg NO2--N/L.	81
Figure 44. The effect of pH for (SOUR)NH4 in microbial granules under HP and AP systems at 150 mg NH4+-N /L.	83
Figure 45. The effect of NH4+-N concentration for (SOUR)NH4 in microbial granules under HP and AP systems at pH 7.0.	83
Figure 46. The effect of pH for (SOUR)NO2 in microbial granules under HP and AP systems at 200 mg NO2--N /L.	85
Figure 47. The effect of NO2--N concentration for (SOUR)NO2 in microbial granules under HP and AP systems at pH 7.0.	85

List of Table
Table 1. Feed water quality in phase I.	31
Table 2. Feed water quality for different periods of test	31
Table 3. The stains used in the proposed staining scheme	36
Table 4. SRT and biomass yield from AG under HP and AP conditions	59
Table 5. NH4+-N degradation for system under HP and AP conditions	64
Table 6. NH4+-N degradation for sludge under HP and AP conditions	64
Table 7. DO diffusion depth in AP sludge.	67
參考文獻
1.	Adav, S. S.; Lee, D.-J.; Show, K.-Y.; Tay, J.-H., Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008, 26, (5), 411-423.
2.	Abdullah, N.; Ujang, Z.; Yahya, A., Aerobic granular sludge formation for high strength agro-based wastewater treatment. Bioresour. Technol. 2011, 102, (12), 6778-6781.
3.	Coma, M.; Verawaty, M.; Pijuan, M.; Yuan, Z.; Bond, P. L., Enhancing aerobic granulation for biological nutrient removal from domestic wastewater. Bioresour. Technol. 2012, 103, (1), 101-108.
4.	Figueroa, M.; Val Del Rio, A.; Campos, J. L.; Mosquera-Corral, A.; Mendez, R., Treatment of high loaded swine slurry in an aerobic granular reactor. Water Sci. Technol. 2011, 63, (9), 1808-1814.
5.	Duque, A. F.; Bessa, V. S.; Carvalho, M. F.; de Kreuk, M. K.; van Loosdrecht, M. C. M.; Castro, P. M. L., 2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Res. 2011, 45, (20), 6745-6752.
6.	Wang, Z.; Li, B.; Zhang, T., Identification of surfactants emerged in aerobic granulation. Chemosphere 2011, 82, (4), 535-540.
7.	Gobi, K.; Mashitah, M. D.; Vadivelu, V. M., Development and utilization of aerobic granules for the palm oil mill (POM) wastewater treatment. Chem. Eng. J. 2011, 174, (1), 213-220.
8.	Rosman, N. H.; Nor Anuar, A.; Othman, I.; Harun, H.; Sulong, M. Z.; Elias, S. H.; Mat Hassan, M. A. H.; Chelliapan, S.; Ujang, Z., Cultivation of aerobic granular sludge for rubber wastewater treatment. Bioresour. Technol. 2013, 129, (0), 620-623.
9.	Liu, Y.; Liu, Q. S., Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol. Adv. 2006, 24, (1), 115-127.
10.	Zheng, Y. M.; Yu, H. Q.; Liu, S. J.; Liu, X. Z., Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 2006, 63, (10), 1791-1800.
11.	Chiu, Z. C.; Chen, M. Y.; Lee, D. J.; Wang, C. H.; Lai, J. Y., Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure. Appl. Microbiol. Biotechnol. 2007, 75, (3), 685-691.
12.	Chiu, Z. C.; Chen, M. Y.; Lee, D. J.; Wang, C. H.; Lai, J. Y., Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res. 2007, 41, (4), 884-892.
13.	Moy, B. Y. P.; Tay, J. H.; Toh, S. K.; Liu, Y.; Tay, S. T. L., High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 2002, 34, (6), 407-412.
14.	Jang, A.; Yoon, Y.-H.; Kim, I. S.; Kim, K.-S.; Bishop, P. L., Characterization and evaluation of aerobic granules in sequencing batch reactor. J. Biotechnol. 2003, 105, (1-2), 71-82.
15.	Lemaire, R.; Webb, R. I.; Yuan, Z., Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J 2008, 2, (5), 528-541.
16.	Ren, T. T.; Liu, L.; Sheng, G. P.; Liu, X. W.; Yu, H. Q.; Zhang, M. C.; Zhu, J. R., Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Res. 2008, 42, (13), 3343-3352.
17.	曾枱瑋. 利用間歇高壓生物反應器結合砂濾程序去除廢水中有機物之研究. 碩士論文, 淡江大學, 2008.
18.	Lettinga, G.; van Velsen, A. F. M.; Hobma, S. W.; de Zeeuw, W.; Klapwijk, A., Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 1980, 22, (4), 699-734.
19.	Mishima, K.; Nakamura, M., Self-immobilization of aerobic activated sludge - A pilot study of the Aerobic Upflow Sludge Blanket Process in municipal sewage treatment. Water Sci. Technol. 1991, 23, (4-6), 981-990.
20.	Morgenroth, E.; Sherden, T.; Van Loosdrecht, M. C. M.; Heijnen, J. J.; Wilderer, P. A., Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997, 31, (12), 3191-3194.
21.	Wang, H.; Yu, G.; Liu, G.; Pan, F., A new way to cultivate aerobic granules in the process of papermaking wastewater treatment. Biochem. Eng. J. 2006, 28, (1), 99-103.
22.	Beun, J. J.; Hendriks, A.; van Loosdrecht, M. C. M.; Morgenroth, E.; Wilderer, P. A.; Heijnen, J. J., Aerobic granulation in a sequencing batch reactor. Water Res. 1999, 33, (10), 2283-2290.
23.	Liu, Y.; Yang, S.-F.; Liu, Q.-S.; Tay, J.-H., The Role of Cell Hydrophobicity in the Formation of Aerobic Granules. Curr Microbiol 2003, 46, (4), 0270-0274.
24.	Khan, M. Z.; Mondal, P. K.; Sabir, S., Aerobic granulation for wastewater bioremediation: A review. Can. J. Chem. Eng. 2012.
25.	Zita, A.; Hermansson, M., Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiol. Lett. 1997, 152, (2), 299-306.
26.	Tay, J. H.; Liu, Q. S.; Liu, Y., The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl. Microbiol. Biotechnol. 2001, 57, (1-2), 227-233.
27.	Wang, Z.; Liu, L.; Yao, J.; Cai, W., Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 2006, 63, (10), 1728-1735.
28.	Liu, Y.; Tay, J.-H., State of the art of biogranulation technology for wastewater treatment. Biotechnol. Adv. 2004, 22, (7), 533-563.
29.	Tay, J. H.; Liu, Q. S.; Liu, Y., Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol. 2001, 91, (1), 168-175.
30.	Liu, Y.-Q.; Tay, J.-H., Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors. Enzyme Microb. Technol. 2007, 41, (4), 516-522.
31.	Jiang, H. L.; Tay, J. H.; Tay, S. T. L., Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett. Appl. Microbiol. 2002, 35, (5), 439-445.
32.	Liu, Y.; Yang, S. F.; Tay, J. H.; Liu, Q. S.; Qin, L.; Li, Y., Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb. Technol. 2004, 34, (5), 371-379.
33.	Wang, F.; Yang, F. L.; Zhang, X. W.; Liu, Y. H.; Zhang, H. M.; Zhou, J., Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors. World J. Microbiol. Biotechnol. 2005, 21, (8-9), 1379-1384.
34.	Liu, Y. Q.; Wu, W. W.; Tay, J. H.; Wang, J. L., Starvation is not a prerequisite for the formation of aerobic granules. Appl. Microbiol. Biotechnol. 2007, 76, (1), 211-216.
35.	Liu, Y. Q.; Tay, J. H., Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresour. Technol. 2008, 99, (5), 980-985.
36.	Bos, R.; van der Mei, H. C.; Busscher, H. J., Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol. Rev. 1999, 23, (2), 179-230.
37.	Wilen, B. M.; Gapes, D.; Keller, J., Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. Biotechnol. Bioeng. 2004, 86, (4), 445-457.
38.	Song, Z.; Pan, Y.; Zhang, K.; Ren, N.; Wang, A., Effect of seed sludge on characteristics and microbial community of aerobic granular sludge. J. Environ. Sci. 2010, 22, (9), 1312-1318.
39.	Sheng, G.-p.; Li, A.-j.; Li, X.-y.; Yu, H.-q., Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation. Chem. Eng. J. 2010, 160, (1), 108-114.
40.	Zheng, Y. M.; Yu, H. Q.; Sheng, G. P., Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem. 2005, 40, (2), 645-650.
41.	Arrojo, B.; Mosquera-Corral, A.; Garrido, J. M.; M矇ndez, R., Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res. 2004, 38, (14-15), 3389-3399.
42.	Wang, S. G.; Liu, X. W.; Gong, W. X.; Gao, B. Y.; Zhang, D. H.; Yu, H. Q., Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresour. Technol. 2007, 98, (11), 2142-2147.
43.	Othman, I.; Anuar, A. N.; Ujang, Z.; Rosman, N. H.; Harun, H.; Chelliapan, S., Livestock wastewater treatment using aerobic granular sludge. Bioresour. Technol. 2013, (0).
44.	Adav, S. S.; Chen, M. Y.; Lee, D. J.; Ren, N. Q., Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere 2007, 67, (8), 1566-1572.
45.	Tsuneda, S.; Nagano, T.; Hoshino, T.; Ejiri, Y.; Noda, N.; Hirata, A., Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 2003, 37, (20), 4965-4973.
46.	Williams, J. C.; de los Reyes Iii, F. L., Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci. Technol. 2006, 54, (1), 139-146.
47.	Lee, D.-J.; Chen, Y.-Y.; Show, K.-Y.; Whiteley, C. G.; Tay, J.-H., Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol. Adv. 2010, 28, (6), 919-934.
48.	Liu, Q. S.; Tay, J. H.; Liu, Y., Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ. Technol. 2003, 24, (10), 1235-1242.
49.	Tay, J. H.; Pan, S.; He, Y.; Tay, S. T. L., Effect of organic loading rate on aerobic granulation. II: Characterisctics of aerobic granules. J. Environ. Eng. 2004, 130, (10), 1102-1109.
50.	Wang, S. G.; Gai, L. H.; Zhao, L. J.; Fan, M. H.; Gong, W. X.; Gao, B. Y.; Ma, Y., Aerobic granules for low-strength wastewater treatment: Formation, structure, and microbial community. J. Chem. Technol. Biotechnol. 2009, 84, (7), 1015-1020.
51.	Liu, Y.; Lin, Y. M.; Yang, S. F.; Tay, J. H., A balanced model for biofilms developed at different growth and detachment forces. Process Biochem. 2003, 38, (12), 1761-1765.
52.	Kim, I. S.; Kim, S. M.; Jang, A., Characterization of aerobic granules by microbial density at different COD loading rates. Bioresour. Technol. 2008, 99, (1), 18-25.
53.	Lopez-Palau, S.; Dosta, J.; Mata-Alvarez, J., Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater. Water Sci. Technol. 2009, 60, (4), 1049-1054.
54.	Tay, J. H.; Jiang, H. L.; Tay, S. T. L., High-rate biodegradation of phenol by aerobically grown microbial granules. J. Environ. Eng. 2004, 130, (12), 1415-1423.
55.	Schwarzenbeck, N.; Erley, R.; Wilderer, P. A., Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci. Technol. 2004, 49, (11-12), 41-46.
56.	Jiang, H. L.; Tay, J. H.; Liu, Y.; Tay, S. T. L., Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol. Lett 2003, 25, (2), 95-99.
57.	Li, X.-M.; Liu, Q.-Q.; Yang, Q.; Guo, L.; Zeng, G.-M.; Hu, J.-M.; Zheng, W., Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresour. Technol. 2009, 100, (1), 64-67.
58.	Qin, L.; Liu, Y.; Tay, J. H., Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem. Eng. J. 2004, 21, (1), 47-52.
59.	McSwain, B. S.; Irvine, R. L.; Wilderer, P. A., The influence of settling time on the formation of aerobic granules. Water Sci. Technol. 2004, 50, (10), 195-202.
60.	Yang, S. F.; Li, X. Y.; Yu, H. Q., Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem. 2008, 43, (1), 8-14.
61.	de Kreuk, M. K.; Pronk, M.; van Loosdrecht, M. C. M., Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res. 2005, 39, (18), 4476-4484.
62.	Song, Z.; Ren, N.; Zhang, K.; Tong, L., Influence of temperature on the characteristics of aerobic granulation in sequencing batch airlift reactors. J. Environ. Sci. 2009, 21, (3), 273-278.
63.	Wang, Z.-W.; Liu, Y.; Tay, J.-H., The role of SBR mixed liquor volume exchange ratio in aerobic granulation. Chemosphere 2006, 62, (5), 767-771.
64.	Yu, G. H.; Juang, Y. C.; Lee, D. J.; He, P. J.; Shao, L. M., Enhanced aerobic granulation with extracellular polymeric substances (EPS)-free pellets. Bioresour. Technol. 2009, 100, (20), 4611-4615.
65.	Yang, S. F.; Tay, J. H.; Liu, Y., A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J. Biotechnol. 2003, 106, (1), 77-86.
66.	Adav, S. S.; Lee, D. J.; Lai, J. Y., Aerobic granulation in sequencing batch reactors at different settling times. Bioresour. Technol. 2009, 100, (21), 5359-5361.
67.	Qin, L.; Tay, J. H.; Liu, Y., Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem. 2004, 39, (5), 579-584.
68.	Kong, Y.; Liu, Y. Q.; Tay, J. H.; Wong, F. S.; Zhu, J., Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios. Enzyme Microb. Technol. 2009, 45, (5), 379-383.
69.	Liu, Y.; Tay, J. H., The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002, 36, (7), 1653-1665.
70.	Tay, J. H.; Liu, Q. S.; Liu, Y., The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor. Water Sci. Technol. 2004, 49, (11-12), 35-40.
71.	McSwain, B. S.; Irvine, R. L., Dissolved oxygen as a key parameter to aerobic granule formation. Water Sci. Technol. 2008, 58, (4), 781-787.
72.	Dulekgurgen, E.; Artan, N.; Orhon, D.; Wilderer, P. A., How does shear affect aggregation in granular sludge sequencing batch reactors? Relations between shear, hydrophobicity, and extracellular polymeric substances. Water Sci. Technol. 2008, 58, (2), 267-276.
73.	Peng, D.; Bernet, N.; Delgenes, J.-P.; Moletta, R., Aerobic granular sludge--a case report. Water Res. 1999, 33, (3), 890-893.
74.	Mosquera-Corral, A.; De Kreuk, M. K.; Heijnen, J. J.; Van Loosdrecht, M. C. M., Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res. 2005, 39, (12), 2676-2686.
75.	Wilena, B.-M.; Balmerb, P., The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Res. 1999, 33, (2), 391-400.
76.	Li, A. j.; Zhang, T.; Li, X. y., Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions. Chemosphere 2010, 78, (5), 500-509.
77.	Wang, Z. W.; Liu, Y.; Tay, J. H., Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol. 2005, 69, (4), 469-473.
78.	Chen, M. Y.; Lee, D. J.; Tay, J. H., Distribution of extracellular polymeric substances in aerobic granules. Appl. Microbiol. Biotechnol. 2007, 73, (6), 1463-1469.
79.	Seviour, T.; Donose, B. C.; Pijuan, M.; Yuan, Z., Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules. Environ. Sci. Technol. 2010, 44, (12), 4729-4734.
80.	Adav, S. S.; Lee, D. J.; Lai, J. Y., Aerobic granules with inhibitory strains and role of extracellular polymeric substances. J. Hazard. Mater. 2010, 174, (1-3), 424-428.
81.	Xu, H.; He, P.; Wang, G.; Shao, L., Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation. Water Sci. Technol. 2010, 61, (11), 2931-2942.
82.	Zhang, L.; Feng, X.; Zhu, N.; Chen, J., Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microb. Technol. 2007, 41, (5), 551-557.
83.	McSwain, B. S.; Irvine, R. L.; Hausner, M.; Wilderer, P. A., Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge. Appl. Environ. Microbiol. 2005, 71, (2), 1051-1057.
84.	Chen, M.-Y.; Lee, D.-J.; Tay, J.-H.; Show, K.-Y., Staining of extracellular polymeric substances and cells in bioaggregates. Appl. Microbiol. Biotechnol. 2007, 75, (2), 467-474.
85.	Adav, S. S.; Lee, D. J.; Tay, J. H., Extracellular polymeric substances and structural stability of aerobic granule. Water Res. 2008, 42, (6-7), 1644-1650.
86.	Seviour, T.; Pijuan, M.; Nicholson, T.; Keller, J.; Yuan, Z., Understanding the properties of aerobic sludge granules as hydrogels. Biotechnol. Bioeng. 2009, 102, (5), 1483-1493.
87.	Seviour, T.; Pijuan, M.; Nicholson, T.; Keller, J.; Yuan, Z., Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges. Water Res. 2009, 43, (18), 4469-4478.
88.	Yang, S. F.; Tay, J. H.; Liu, Y., Inhibition of free ammonia to the formation of aerobic granules. Biochem. Eng. J. 2004, 17, (1), 41-48.
89.	Adav, S. S.; Lee, D. J.; Lai, J. Y., Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances. Appl. Microbiol. Biotechnol. 2007, 77, (1), 175-182.
90.	Adav, S. S.; Lee, D. J., Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J. Hazard. Mater. 2008, 154, (1-3), 1120-1126.
91.	Adav, S. S.; Lin, J. C. T.; Yang, Z.; Whiteley, C. G.; Lee, D. J.; Peng, X. F.; Zhang, Z. P., Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments. Biotechnol. Adv. 2010, 28, (2), 255-280.
92.	Juang, Y.-C.; Adav, S. S.; Lee, D.-J.; Lai, J.-Y., Influence of Internal Biofilm Growth on Residual Permeability Loss in Aerobic Granular Membrane Bioreactors. Environ. Sci. Technol. 2010, 44, (4), 1267-1273.
93.	Beun, J. J.; van Loosdrecht, M. C. M.; Heijnen, J. J., Aerobic granulation in a sequencing batch airlift reactor. Water Res. 2002, 36, (3), 702-712.
94.	Xuan, W.; Bin, Z.; Zhiqiang, S.; Zhigang, Q.; Zhaoli, C.; Min, J.; Junwen, L.; Jingfeng, W., The EPS characteristics of sludge in an aerobic granule membrane bioreactor. Bioresour. Technol. 2010, 101, (21), 8046-8050.
95.	Tu, X.; Zhang, S.; Xu, L.; Zhang, M.; Zhu, J., Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge. Desalination 2010, 261, (1-2), 191-196.
96.	Sanchez Sanchez, A.; Garrido, J. M.; Mendez, R., A comparative study of tertiary membrane filtration of industrial wastewater treated in a granular and a flocculent sludge SBR. Desalination 2010, 250, (2), 810-814.
97.	Juang, Y.-C.; Adav, S.; Lee, D.-J.; Lai, J.-Y., Biodiversity in aerobic granule membrane bioreactor at high organic loading rates. Appl. Microbiol. Biotechnol. 2009, 85, (2), 383-388.
98.	Thanh, B. X.; Visvanathan, C.; Sperandiob, M.; Aim, R. B., Fouling characterization in aerobic granulation coupled baffled membrane separation unit. J. Membr. Sci. 2008, 318, (1-2), 334-339.
99.	Juang, Y. C.; Lee, D. J.; Lai, J. Y., Fouling layer on hollow-fibre membrane in aerobic granule membrane bioreactor. J. Chin. Inst. Chem. Eng, 2008, 39, (6), 657-661.
100.	Zhou, J.; Yang, F.-l.; Meng, F.-g.; An, P.; Wang, D., Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge. J. Environ. Sci. 2007, 19, (11), 1281-1286.
101.	Tay, J. H.; Yang, P.; Zhuang, W. Q.; Tay, S. T. L.; Pan, Z. H., Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor. J. Membr. Sci. 2007, 304, (1-2), 24-32.
102.	Li, X.; Li, Y.; Liu, H.; Hua, Z.; Du, G.; Chen, J., Characteristics of aerobic biogranules from membrane bioreactor system. J. Membr. Sci. 2007, 287, (2), 294-299.
103.	Wang, J.; Wang, X.; Zhao, Z.; Li, J., Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor. Appl. Microbiol. Biotechnol. 2008, 79, (4), 679-685.
104.	Pollice, A.; Tandoi, V.; Lestingi, C., Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res. 2002, 36, (10), 2541-2546.
105.	Metcalf & Eddy.; Tchobanoglous, G.; Burton, F. L.; Stensel, H. D., Wastewater engineering : treatment and reuse. 4th ed.; McGraw-Hill: Boston, 2003.
106.	Cecen, F., Investigation of partial and full nitrification characteristics of fertilizer wastewaters in a submerged biofilm reactor. Water Sci. Technol. 1996, 34, (11), 77-85.
107.	Bellucci, M.; Ofiţeru, I. D.; Graham, D. W.; Head, I. M.; Curtis, T. P., Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 2011, 77, (21), 7787-7796.
108.	Park, H. D.; Noguera, D. R., Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. J. Appl. Microbiol. 2007, 102, (5), 1401-1417.
109.	Ye, L.; Zhang, T., Ammonia-oxidizing bacteria dominates over ammonia-oxidizing archaea in a saline nitrification reactor under low DO and high nitrogen loading. Biotechnol. Bioeng. 2011, 108, (11), 2544-2552.
110.	Schon, G.; Geywitz, S.; Mertens, F., Influence of dissolved oxygen and oxidation-reduction potential on phosphate release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal. Water Res. 1993, 27, (3), 349-354.
111.	Shehab, O.; Deininger, R.; Porta, F.; Wojewski, T., Optimizing phosphorus removal at the Ann Arbor Wastewater Treatment Plant. Water Sci. Technol. 1996, 34, (1–2), 493-499.
112.	Yang, S. F.; Tay, J. H.; Liu, Y., Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules. J. Environ. Eng. 2005, 131, (1), 86-92.
113.	Wu, L.; Peng, C.; Peng, Y.; Li, L.; Wang, S.; Ma, Y., Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. J. Environ. Sci. 2012, 24, (2), 234-241.
114.	Kim, D.-J.; Seo, D., Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor. Process Biochem. 2006, 41, (5), 1055-1062.
115.	Liu, Y. Q.; Wu, W. W.; Tay, J. H.; Wang, J. L., Formation and long-term stability of nitrifying granules in a sequencing batch reactor. Bioresour. Technol. 2008, 99, (9), 3919-3922.
116.	Wang, X. H.; Zhang, H. M.; Yang, F. L.; Xia, L. P.; Gao, M. M., Improved stability and performance of aerobic granules under stepwise increased selection pressure. Enzyme Microb. Technol. 2007, 41, (3), 205-211.
117.	Shi, X.-Y.; Sheng, G.-P.; Li, X.-Y.; Yu, H.-Q., Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresour. Technol. 2010, 101, (9), 2960-2964.
118.	Bassin, J. P.; Kleerebezem, R.; Rosado, A. S.; Van Loosdrecht, M. C. M.; Dezotti, M., Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ. Sci. Technol. 2012, 46, (3), 1546-1555.
119.	Vadivelu, V. M.; Keller, J.; Yuan, Z., Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture. Biotechnol. Bioeng. 2006, 95, (5), 830-839.
120.	Qin, L.; Liu, Y., Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor. Chemosphere 2006, 63, (6), 926-933.
121.	Adav, S. S.; Lee, D. J.; Lai, J. Y., Biological nitrification-denitrification with alternating oxic and anoxic operations using aerobic granules. Appl. Microbiol. Biotechnol. 2009, 84, (6), 1-9.
122.	Cassidy, D. P.; Belia, E., Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res. 2005, 39, (19), 4817-4823.
123.	Wu, C.-Y.; Peng, Y.-Z.; Wang, R.-D.; Zhou, Y.-X., Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Chemosphere 2012, 86, (8), 767-773.
124.	De Kreuk, M. K.; Heijnen, J. J.; Van Loosdrecht, M. C. M., Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng. 2005, 90, (6), 761-769.
125.	Male, P. C.; Pretoruis, W. A., Aerobic treatment of inhibitory wastewater using a high-pressure bioreactor with membrane separation. Water Sci. Technol. 2001, 43, (11), 51-58.
126.	張原維. 批次式好氧高壓造粒程序. 碩士論文, 淡江大學, 2011.
127.	Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, (1-2), 248-254.
128.	Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, (3), 350-356.
129.	APHA; AWWA; WEF, Standard Methods for the Examination of Water and Wastewater. 20th ed.; American Public Health Association : American Water Works Association : Water Environment Federation: Washington, DC, 1998.
130.	Ni, B.-J.; Xie, W.-M.; Liu, S.-G.; Yu, H.-Q.; Wang, Y.-Z.; Wang, G.; Dai, X.-L., Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 2009, 43, (3), 751-761.
131.	Chen, Y.; Jiang, W.; Liang, D.; Tay, J., Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor. Appl. Microbiol. Biotechnol. 2008, 79, (2), 301-308.
132.	Chen, Y.; Jiang, W.; Liang, D. T.; Tay, J. H., Aerobic granulation under the combined hydraulic and loading selection pressures. Bioresour. Technol. 2008, 99, (16), 7444-7449.
133.	McSwain, B. S.; Irvine, R. L.; Wilderer, P. A., The effect of intermittent feeding on aerobic granule structure. Water Sci. Technol. 2004, 49, (11-12), 19-25.
134.	Geng, Z.; Hall, E. R., A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes. Water Res. 2007, 41, (19), 4329-4338.
135.	Zhang, H.; He, Y.; Jiang, T.; Yang, F., Research on characteristics of aerobic granules treating petrochemical wastewater by acclimation and co-metabolism methods. Desalination 2011, 279, (1–3), 69-74.
136.	Peng, D.; Bernet, N.; Delgenes, J.-P.; Moletta, R., Effects of Oxygen Supply Methods on the Performance of a Sequencing Batch Reactor for High Ammonium Nitrification. Water Environ. Res 2000, 72, (2), 195-200.
137.	Wei, D.; Si, W.; Zhang, Y.; Qiao, Z.; Yao, Z.; Zhao, W.; Zhao, J.; Chen, G.; Wei, Q.; Du, B., Aerobic granulation and nitrogen removal with the effluent of internal circulation reactor in start-up of a pilot-scale sequencing batch reactor. Bioprocess Biosyst. Eng. 2012, 1-8.
138.	Abbassi, B.; Dullstein, S.; Rabiger, N., Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs; experimental and theoretical approach. Water Res. 2000, 34, (1), 139-146.
139.	Gao, D.-W.; Liu, L.; Liang, H., Influence of aeration intensity on mature aerobic granules in sequencing batch reactor. Appl. Microbiol. Biotechnol. 2012, 1-7.
140.	Jin, Z.; Pan, Z.; Yu, S.; Lin, C., Experimental study on pressurized activated sludge process for high concentration pesticide wastewater. J. Environ. Sci. 2010, 22, (9), 1342-1347.
141.	Tsuneda, S.; Park, S.; Hayashi, H.; Jung, J.; Hirata, A., Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Water Sci. Technol. 2001, 43, (6), 197-204.
142.	Filali, A.; Bessiere, Y.; Sperandio, M., Effects of oxygen concentration on the nitrifying activity of an aerobic hybrid granular sludge reactor. Water Sci. Technol. 2012, 65, (2), 289-295.
143.	Vadivelu, V. M.; Keller, J.; Yuan, Z., Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci. Technol. 2007, 56, (7), 89-97.
144.	Kim, D. J.; Chang, J. S.; Lee, D. I.; Han, D. W.; Yoo, I. K.; Cha, G. C., Nitrification of high strength ammonia wastewater and nitrite accumulation characteristics. Water Sci. Technol. 2003, 47, 45-51.
145.	Hellinga, C.; Schellen, A. A. J. C.; Mulder, J. W.; van Loosdrecht, M. C. M.; Heijnen, J. J., The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 1998, 37, (9), 135-142.
146.	Li, L. Y.; Peng, Y. Z.; Wang, S. Y.; Wu, L.; Ma, Y.; Takigawa, A.; Li, D., Formation and characteristics of nitritation granules cultivated in sequencing batch reactor by stepwise increase of N/C ratio. Water Sci. Technol. 2011, 64, (7), 1479-1487.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信