§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1806200822334400
DOI 10.6846/TKU.2008.00554
論文名稱(中文) 以中繼站為基礎的合作式通訊系統中 通道估測之研究
論文名稱(英文) Channel Estimation for Relay Based Cooperative Communication Systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 顏進益
研究生(英文) Chin-Yi Yen
學號 695441054
學位類別 碩士
語言別 英文
第二語言別
口試日期 2008-06-13
論文頁數 60頁
口試委員 指導教授 - 易志孝(chyih@ee.tku.edu.tw)
委員 - 嚴雨田(059270@mail.tku.edu.tw)
委員 - 趙亮琳(jau@mail.sju.edu.tw)
關鍵字(中) 通道估測
合作式通訊
中繼傳輸
導引符號輔助調變
效能分析
關鍵字(英) channel estimation
cooperative communication systems
relay-based transmission
pilot symbol assisted modulation (PSAM)
performance analysis
第三語言關鍵字
學科別分類
中文摘要
雖然許多探討基於中繼站的同調合作式通訊系統的研究已經顯示其可達到如多天線技術般使用空間分集之效益,稱之為合作分集;但是,這些研究分析主要是基於接收端可獲得完美的通道狀態資訊之假設。在實際應用情形下,通道狀態資訊必須經由估計取得且非完美通道狀態資訊對系統效能的影響也需要加以分析。在本篇論文中,我們探討採用放大轉傳模式的中繼站為基礎之合作式通訊系統並研究其通道估測問題。對於放大轉傳的傳輸機制而言,中繼站可以固定增益或變動增益來放大接收來自源端的訊號再進而傳送到終端。取決於中繼站的移動性,我們考慮固定端至移動端間通道之模型以及移動端至移動端間通道之模型。我們利用導引符號輔助調變(PSAM)來落實通道估測的工作,並把線性最小均方誤差(LMMSE)視為估測準則,再加以電腦模擬舉例說明非完美通道狀態資訊對採用放大轉傳模式的中繼站為基礎之合作式通訊系統所產生的影響。
英文摘要
Although many researches on relay-based cooperative coherent communication systems have shown that the benefits of spatial diversity, saying cooperative diversity, can be achieved as the multi-antenna technologies do, the analyses primarily rely on the assumption that the perfect channel state information (CSI) is available at the receiver. In practical scenarios, the CSI has to be estimated and the effect of imperfect CSI on system performance needs to be analyzed. In this thesis, we study the channel estimation problem for amplify-and-forward (AF) relay-based cooperative communication systems. For AF transmission scheme, the relay amplifies the received signal from the source by a fixed or variable gain and forwards it to the destination. Depending on the mobility of the relay, we consider both the fixed-to-mobile channel model and the mobile-to-mobile channel model. To facilitate the channel estimation task, we employ the pilot symbol assisted modulation (PSAM) and consider the linear minimum mean-squared error (LMMSE) as the estimation criterion. Computer simulations are conducted to illustrate the influences of the imperfect CSI on the performance of AF relay-based communication systems.
第三語言摘要
論文目次
TABLE OF CONTENTS

ACKNOWLEDGENMENTS	I
中文摘要	II
ABSTRACT	III
TABLE OF CONTENTS	IV
LIST OF FIGURES	VI
CHAPTER 1  INTRODUCTION	1
CHAPTER 2  WIRELESS TRANSMISSION ENVIRONMENTS	5
2.1	Radio Propagation Phenomena	5
2.1.1	Large scale fading: pathloss and shadowing	5
2.1.2	Small scale fading: multipath scattering	7
2.1.3	Line-of-sight and non line-of-sight surroundings	9
2.2	Wireless Mobile Channel Characteristics	10
2.2.1	Multipath delay spread and coherence bandwidth	10
2.2.2	Doppler spread and coherence time	13
2.3	 Diversity Techniques for Multipath Fading Channel	14
2.3.1	Diversity types	14
2.3.2	Combining techniques	14
CHAPTER 3  WIRELESS MOBILE CHANNEL MODELS	15
3.1	Fixed-to-Mobile Channel Models	15
3.2	Mobile-to-Mobile Channel Models	19
3.3	Wireless Relay Channel Models	22
3.4	Simulation Results	27
CHAPTER 4  CHANNEL ESTIMATION AND ESTIMATOR CRITERIA	32
4.1	System Model	32
4.2	Channel Estimation Design	34
4.2.1	Pilot symbol assisted modulation	34
4.2.2	Estimator criteria	36
4.3	Estimation of the AF Relay Channel	41
4.3.1	Fixed gain case	41
4.3.1.1	Stationary relay	42
4.3.1.2	Mobile relay	43
4.3.2	Variable gain case	44
4.3.2.1	Stationary relay	45
4.3.2.2	Mobile relay	47
4.4	Maximal Ratio Combining	48
4.5	Numerical Results	49
4.5.1	Performance of the LMMSE estimator	49
4.5.2	Pilot insertion period	51
4.5.3	The number of pilots	54
4.5.4	Doppler spread	54
4.5.5	The effect of MRC	55
CHAPTER 5  CONCLUSIONS AND FUTURE WORK	57
5.1	Conclusions	57
5.2	Future Work	57
REFERENCES	58


LIST OF FIGURES

Figure 1.1   The three-node channel model of the cooperative system	3
Figure 3.1   The single-ring model	16
Figure 3.2   Sketch of the double-ring model	20
Figure 3.3   Sketches of the AoA and the AoD	21
Figure 3.4   AF relay channel model	23
Figure 3.5   Pdfs of the envelope of the fixed-to-mobile channel model	27
Figure 3.6   Correlation functions of the simulated fixed-to-mobile channel model	28
Figure 3.7   Correlation functions of the simulated mobile-to-mobile channel model	28
Figure 3.8   Pdfs of the envelope of the mobile-to-mobile channel model	29
Figure 3.9   Comparison of the envelopes’ pdfs between the fixed-gain and the variable-gain AF relay channel models	29
Figure 3.10  Correlation functions of a stationary relay with fixed gain	30
Figure 3.11  Correlation functions of a stationary relay with variable gain	30
Figure 3.12  Correlation functions of a mobile relay with fixed gain	31
Figure 3.13  Correlation functions of a mobile relay with variable gain	31
Figure 4.1   Sketch of the pilot symbol assisted modulation	35
Figure 4.2   LMMSE estimator performances for a stationary relay	50
Figure 4.3   LMMSE estimator performances for a mobile relay	50
Figure 4.4   The average MSE in estimating the composite AF relay channel	51
Figure 4.5   Influence of pilot spacing on estimator performances (fixed gain)	52
Figure 4.6   Influence of pilot spacing on estimator performances (variable gain)	52
Figure 4.7   Influence of pilot numbers on estimator performances (fixed gain)	53
Figure 4.8   Influence of pilot numbers on estimator performances (variable gain)	53
Figure 4.9   Effects of Doppler spreads on estimator performances (fixed gain)	54
Figure 4.10  Effects of Doppler spreads on estimator performances (variable gain)	55
Figure 4.11  LMMSE estimator performances when a direct link is available	56
Figure 4.12  LMMSE estimator performances when a weaker direct link is available	56
參考文獻
[1] E. C. Van der Meulen, “Three-terminal communication channels,” Adv. Appl. Probab., vol. 3, pp. 120–154, 1971.
[2] T. M. Cover and A. A. El Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inform. Theory, vol. 25, pp. 572–584, Sept. 1979.
[3] J.N. Laneman, G.W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, pp. 2415 – 2425 Oct. 2003.
[4] J.N. Laneman, D.N.C. Tse, G.W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, pp. 3062 – 3080, Dec. 2004.
[5] A. Sendonaris, E. Erkip, B. Aazhang, “User cooperation diversity-Part I: System description” IEEE Trans. on Commun., vol. 51, pp. 1927 – 1938, Nov. 2003.
[6] A. Sendonaris, E. Erkip, B. Aazhang, “User cooperation diversity-Part II: 
Implementation aspects and performance analysis,” IEEE Trans. on Commun., vol. 51, pp.
1939 – 1948, Nov. 2003.
[7] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Syst. Tech. J., pp. 957–1000, July–Aug. 1968.
[8] W. C. Jakes, Microwave Mobile Communications, 2nd ed. Piscataway, NJ: IEEE Press, 1994.
[9] Y. R. Zheng and C. Xiao, “Simulation models with correct statistical properties for Rayleigh fading channels,” IEEE Trans. Commun., vol. 51, no. 6, pp. 920-928, Jun. 2003.
[10] Cavers, J. K., “An analysis of pilot symbol assisted model for Rayleigh fading channels," IEEE Trans. Veh. Technol., vol. 40, pp. 686-693, Nov. 1991.
[11] L. Tong, B. M. Sadler, and M. Dong “Pilot-assisted wireless transmissions: General model, design criteria, and signal processing,” IEEE Signal Processing Mag., vol. 21, pp. 12-25, Nov. 2004.
[12] L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time-series Analysis. Reading, MA: Addison-Wesley, 1991.
[13] M. Schwartz, Mobile Wireless Communications. New York: Cambridge University Press, 2005.
[14] Steele, R., Mobile Radio Communications. London, UK: Pentech Press, 1992.
[15] P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Syst., vol. CS-11, no. 4, pp. 360–393, Dec. 1963.
[16] J. G. Proakis, Digital Communications, 4th ed. Boston, MA: McGraw-Hill, 2001.
[17] D. Tse and P. Viswanath, Fundamentals of Wireless Communications, New York: Cambridge University Press, 2005. 
[18] Akki, A. S. and Haber, F., “A statistical model for mobile-to-mobile land communication channel,” IEEE Trans. Veh. Technol., vol. 35, pp. 2-7, Feb. 1986.
[19] Akki, A. S., “Statistical properties of mobile-to-mobile land communication channels,” IEEE Trans. Veh. Technol., vol. 43, pp. 826-831, Nov. 1994.
[20] Patel, C. S., Stuber, G. L., and Pratt, T. G., “Simulation of Rayleigh faded mobile- to-mobile communications,” IEEE Trans. Commun., vol. 53, no. 11, 2005.
[21] R. U. Nabar, H. Boelcskei, and F. W. Kneubhueler, “Fading relay channels: Performance limits and space-time signal design,” IEEE J. Select. Areas Commun., vol. 22, no. 6, pp. 1099-1109, Aug. 2004.
[22] C. S. Patel, G. L. Stüber, and T. G. Pratt, “Statistical properties of amplify and forward relay channels,” IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 1-9, Jan. 2006.
[23] C. S. Patel and G.L. Stuber, “Channel estimation for amplify and forward relay based cooperation diversity systems”, IEEE Trans. Wireless Commun., vol.6, no. 6, pp. 2348- 2356, June 2007.
[24] Steven M. Kay, Fundamentals of statistical signal processing: estimation theory. Prentice Hall PTR, 1993.
[25] A. Ribeiro, X. Cai, and G.B. Giannakis, "Symbol error probabilities for general cooperative links," IEEE Trans. Comm., vol.4, no.3, pp.1264–1273, May 2005.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信