淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1803201314043800
中文論文名稱 直升機旋翼葉片在惡劣氣象下之非線性效應
英文論文名稱 On the Nonlinear Effects of Helicopter Rotor Blades under Severe Weather Situation
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 呂杰庭
研究生英文姓名 Chieh-Ting Lu
電子信箱 lut0920@hotmail.com
學號 698430393
學位類別 碩士
語文別 英文
口試日期 2013-01-04
論文頁數 81頁
口試委員 指導教授-宛同
委員-劉登
委員-卓大靖
中文關鍵字 直升機葉片  大雨  陣風  空氣動力學分析  MRF 
英文關鍵字 Helicopter rotor blades  Heavy rain  Gusty wind  Aerodynamic analysis  MRF 
學科別分類 學科別應用科學航空太空
中文摘要 現今全球溫室效應影響和極端天氣現象越來越嚴重。在世界各地裡,對人類生命傷亡及財產損失造成嚴重的迫害。全球溫室效應的影響幾乎無所不在且更加頻繁。目前在極端氣象下,直升機已經成為全球救援空勤單位中最廣泛利用的飛行器。由於這個原因,了解和改善在惡劣天氣如陣風和大雨的條件下,直升機的空氣動力學分析是本研究的重點。模擬直升機懸空時,加入軸向(向上、向下)及側向均勻風或正弦陣風和大雨。使用研究團隊中已經開發模擬的雨滴撞擊二相流方法,然後嵌入直升機旋轉葉片表面粗糙度的影響。結果顯示,發現複雜的非線性效應影響著升力和阻力,但似乎垂直正弦陣風引起升力最大影響;而大雨是相較明顯影響阻力。雖然目前的工作只集中於對稱翼型和缺乏大雨實驗數據進行比較,但相信我們的研究結果還是證明,惡劣氣象在直升機上,定性和定量的不利影響。強烈建議,在惡劣氣象情況下,每一位飛行員應該在這項工作中獲得的此訊息,並接受廣泛的訓練,但還認為直升機在大雨情況下應該進行更多的實驗,以驗證我們的結果。
英文摘要 Nowadays the extreme weather phenomenon have becoming more and more severe, causing detrimental effects on human life and property damage all over the world. Almost everywhere, global warming effects impact stronger winds and heavy rain upon us more often. Currently, helicopter has widespread utilization in air rescue mission during disaster situation under extreme weather situations. For this reason the understanding and improvement of helicopter operation under severe weather such as gusty wind and heavy rain condition are the focal points of this research. A numerical simulation tool has been developed and validated for hovering helicopter blades, with the addition of uniform wind, sinusoidal gusty wind, and heavy rain surrounding that blow from upward, downward, and cross directions. For rain droplet impingement simulation, a two-phase flow approach has first been developed and then the surface roughness effects are also included for helicopter rotating blades. Results show a complicated nonlinear effect on hovering helicopter lift and drag forces, but it seems the vertical sinusoidal gust wind induces largest impact on lift, whilst heavy rain is more influential to drag. Although current work is only concentrated on symmetric airfoil and lacking heavy rain experimental data to compare with, it is believed that our results still show the severe weather detrimental effects on helicopter, both qualitatively and quantitatively. While it is highly recommended that every helicopter pilot should be aware of the information gained in this work and accepts extensive training in severe weather situations, it is felt that more experiment should be conducted for helicopter in gust and heavy rain conditions in the future.
論文目次 Contents
ABSTRACT: III
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES X
LIST OF SYMBOLS XI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 RESEARCH BACKGROUND 5
2.1. HELICOPTER ROTOR AIRFOIL 5
2.2. GUSTY WIND 12
2.3. HEAVY RAIN EFFECT 14
CHAPTER 3 NUMERICAL MODELING 20
3.1. OVERVIEW 20
3.2. GEOMETRY MODEL CONSTRUCTION 21
3.3. GRID GENERATION 23
3.4. GOVERNING EQUATIONS 25
3.5. TURBULENCE MODELING 26
3.6. MULTIPLE REFERENCE FRAME (MRF) CAPABILITY 27
3.7. DISCRETE PHASE MODEL (DPM) CAPABILITY 29
3.8. FLOW SOLVER 32
3.9. VERIFICATION AND MESH INDEPENDENCE 33
CHAPTER 4 RESULTS AND DISCUSSION 38
4.1. GUSTY WIND EFFECTS ON HELICOPTER BLADE 39
4.2. WIND AND HEAVY RAIN EFFECTS ON HELICOPTER BLADE 55
4.3. SEVERE WEATHER EFFECTS ON MICRO ROTARY WING BLADE 63
CHAPTER 5 CONCLUSIONS 65
REFERENCES 68
APPENDIX 72

List of Figures
FIGURE 2-1 HOVERING FLIGHT DISTRIBUTION OF INCIDENT VELOCITY NORMAL TO THE LEADING EDGE OF ROTOR BLADE. [1] ...................................................................... 5
FIGURE 2-2: THE NASA MODEL AND EXPERIMENTS SET-UP. [5] ...................................... 7
FIGURE 2-3: THE UH-1H HELICOPTER PROFILE. ........................................................... 12
FIGURE 3-1 THE MODEL OF HELICOPTER BLADES. ......................................................... 22
FIGURE 3-2 MODEL OF ALL COMPUTATIONAL ZONES. .................................................... 22
FIGURE 3-3 THE MESH OF ALL COMPUTATIONAL ZONES. (2.2 MILLION CELLS TYPE) ...... 23
FIGURE 3-4 THE MESH OF ROTATIONAL PART COMPUTATIONAL ZONE. (2.2 MILLION CELLS TYPE) .................................................................................................................... 24
FIGURE 3-5 THE NEAR MESH OF THE ROTOR BLADES. (2.2 MILLION CELLS TYPE) ........ 25
FIGURE 3-6 THE SOLUTION FLOW CHART OF THE SEGREGATED ALGORITHM SOLVER. .... 33
FIGURE 3-7 THE PRESSURE COEFFICIENT FOR 2.2M, 3.6M AND 5.1M CELLS GRID INDEPENDENT, AND COMPARE WITH NASA EXPERIMENT [5] IN R/R=0.5. .............. 35
FIGURE 3-8 THE PRESSURE COEFFICIENT FOR 2.2M, 3.6M AND 5.1M CELLS GRID INDEPENDENT, AND COMPARE WITH NASA EXPERIMENT [5] IN R/R=0.68. ............ 35
FIGURE 3-9 THE PRESSURE COEFFICIENT FOR 2.2M, 3.6M AND 5.1M CELLS GRID INDEPENDENT, AND COMPARE WITH NASA EXPERIMENT [5] IN R/R=0.8. .............. 36
FIGURE 3-10 THE PRESSURE COEFFICIENT FOR 2.2M, 3.6M AND 5.1M CELLS GRID INDEPENDENT, AND COMPARE WITH NASA EXPERIMENT [5] IN R/R=0.89. ............ 36
FIGURE 3-11 THE PRESSURE COEFFICIENT FOR 2.2M, 3.6M AND 5.1M CELLS GRID INDEPENDENT, AND COMPARE WITH NASA EXPERIMENT [5] IN R/R=0.96. ............ 37
FIGURE 4-1 THE SINUSOIDAL FUNCTION WIND FIELD. ................................................... 40
FIGURE 4-2 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN HOVER. . 42
FIGURE 4-3 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 10 M/S UNIFORM WIND (CROSS). ....................................................................................... 42
FIGURE 4-4 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S UNIFORM WIND (CROSS). ....................................................................................... 42
FIGURE 4-5 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 10 M/S SINUSOIDAL WIND (CROSS). ................................................................................... 42
FIGURE 4-6 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (CROSS). ................................................................................... 42
FIGURE 4-7 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 10 M/S UNIFORM WIND (UPWARD). .................................................................................... 42
FIGURE 4-8 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S UNIFORM WIND (UPWARD). .................................................................................... 43
FIGURE 4-9 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 10 M/S
VIII
SINUSOIDAL WIND (UPWARD). ............................................................................... 43
FIGURE 4-10 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (UPWARD). ............................................................................... 43
FIGURE 4-11 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 10 M/S UNIFORM WIND (DOWNWARD). .............................................................................. 43
FIGURE 4-12 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S UNIFORM WIND (DOWNWARD). .............................................................................. 43
FIGURE 4-13 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 10 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 43
FIGURE 4-14 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 44
FIGURE 4-15 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN HOVER. ........... 44
FIGURE 4-16 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 10 M/S UNIFORM WIND (CROSS). ...................................................................................................... 44
FIGURE 4-17 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 20 M/S UNIFORM WIND (CROSS). ...................................................................................................... 44
FIGURE 4-18 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 10 M/S SINUSOIDAL WIND (CROSS). ................................................................................... 44
FIGURE 4-19 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (CROSS). ................................................................................... 44
FIGURE 4-20 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 10 M/S UNIFORM WIND (UPWARD). ................................................................................................... 45
FIGURE 4-21 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 20 M/S UNIFORM WIND (UPWARD). ................................................................................................... 45
FIGURE 4-22 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 10 M/S SINUSOIDAL WIND (UPWARD). ............................................................................... 45
FIGURE 4-23 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (UPWARD). ............................................................................... 45
FIGURE 4-24 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 10 M/S UNIFORM WIND (DOWNWARD). ............................................................................................. 45
FIGURE 4-25 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 20 M/S UNIFORM WIND (DOWNWARD). ............................................................................................. 45
FIGURE 4-26 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 10 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 46
FIGURE 4-27 THE AIRFOIL VELOCITY (M/S) CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 46
FIGURE 4-28 LIFT COEFICIENT VERSUS REVOLUTION CYCLES WITH 10 M/S SINUSOIDAL WIND. .................................................................................................................... 51
IX
FIGURE 4-29 LIFT COEFICIENT VERSUS REVOLUTION CYCLES WITH 20 M/S SINUSOIDAL WIND. .................................................................................................................... 51
FIGURE 4-30 DRAG COEFICIENT VERSUS REVOLUTION CYCLES WITH 10 M/S SINUSOIDAL WIND. .................................................................................................................... 52
FIGURE 4-31 DRAG COEFICIENT VERSUS REVOLUTION CYCLES WITH 20 M/S SINUSOIDAL WIND. .................................................................................................................... 52
FIGURE 4-32 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.5 IN HOVER. . 53
FIGURE 4-33 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.5 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 53
FIGURE 4-34 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.68 IN HOVER.53
FIGURE 4-35 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.68 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 53
FIGURE 4-36 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.8 IN HOVER. . 53
FIGURE 4-37 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.8 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 53
FIGURE 4-38 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.89 IN HOVER.54
FIGURE 4-39 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.89 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 54
FIGURE 4-40 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN HOVER.54
FIGURE 4-41 THE AIRFOIL PRESSURE COEFFICIENT CONTOURS AT R/R = 0.96 IN 20 M/S SINUSOIDAL WIND (DOWNWARD). .......................................................................... 54
FIGURE 4-42 LOCAL VIEW OF RAIN DROPLET IMPINGEMENT AND SIZE DISTRIBUTION NEAR BLADES. ................................................................................................................ 55

List of Tables
TABLE 2-1 COEFFICIENTS OF LOGARITHMIC ATMOSPHERIC BOUNDARY LAYER MODEL. [18] ....................................................................................................................... 14
TABLE 4-1 BLADE LIFT FORCE AND LIFT COEFFICIENT COMPARISON UNDER DIFFERENT WIND CONDITIONS. ................................................................................................ 48
TABLE 4-2 BLADE DRAG FORCE AND DRAG COEFFICIENT COMPARISON UNDER DIFFERENT WIND CONDITIONS. ................................................................................................ 48
TABLE 4-3 BLADE DRAG FORCE COMPONENTS UNDER DIFFERENT WIND CONDITIONS. .. 49
TABLE 4-4 SURFACE ROUGHNESS VALUES FOR DIFFERENT CASES. ................................. 56
TABLE 4-5 THE LIFT COEFFICIENT COMPARISON FOR DIFFERENT ROUGHNESS VALUES. .. 57
TABLE 4-6 THE DRAG COEFFICIENT COMPARISON FOR DIFFERENT ROUGHNESS VALUES.57
TABLE 4-7 BLADE LIFT FORCE AND LIFT COEFFICIENT COMPARISON UNDER DIFFERENT WIND AND HEAVY RAIN CONDITIONS. .................................................................... 58
TABLE 4-8 BLADE LIFT FORCE AND DIFFERENCE COMPARISON UNDER DIFFERENT WIND AND HEAVY RAIN CONDITIONS. .............................................................................. 59
TABLE 4-9 BLADE DRAG FORCE AND DIFFERENCE COMPARISON UNDER DIFFERENT WIND AND HEAVY RAIN CONDITIONS. .............................................................................. 61
TABLE 4-10: BLADE DRAG COEFFICIENT COMPONENT PERCENTAGE COMPARISON UNDER DIFFERENT WIND AND HEAVY RAIN CONDITIONS. ................................................... 62
TABLE 4-11 BLADE LIFT COEFFICIENT CHANGE RATIO COMPARISON OF DIFFERENT MODEL SCALE COMPONENT COMPARISON UNDER WIND OR HEAVY RAIN. ........................... 64
TABLE 4-12 BLADE DRAG COEFFICIENT CHANGE RATIO COMPARISON OF DIFFERENT MODEL SCALE COMPONENT COMPARISON UNDER WIND OR HEAVY RAIN. ............... 64
參考文獻 1. Leishman, J. G., Principles of Helicopter Aerodynamics, Cambridge University Press, 2nd edit., 2006.
2. Landgrebe, A. J., Moffett, R., and Clark, D., “Aerodynamics Technology for Advanced Rotorcraft,” Journal of the American Helicopter Society, Vol. 22, No. 2, Apr. 1977.
3. Summa, J. M. and Clark, D. R., “A Lifting-Surface Method for Hover/Climb Loads,” the 35th Annual Forum of the American Helicopter Society, Washington, D. C., Preprint 79-1, May 1979.
4. Caradonna, F. X., “The Transonic Flow on a Helicopter Rotor,” Ph.D. Thesis, Stanford U., Stanford, Calif., March 1978.
5. Caradonna, F. X. and Tung, C., “Experimental and Analytical Studies of a Model Helicopter Rotor in Hover,” NASA-TR-81232, Sept. 1981.
6. Agarwal, R. K., “Euler Calculations for Flowfield of a Helicopter Rotor in Hover,” Journal of Aircraft, Vol. 24, No. 4, April 1987, pp. 231-238.
7. Srinivasan, G. R., and McCroskey, W. J., “Navier-Stokes Calculations of Hovering Rotor Flowfields,” Journal of Aircraft, Vol. 25, No. 10, 1988, pp. 865-874.
8. Conlisk, A. T., “Modern Helicopter Rotor Aerodynamic,” Progress in Aerospace Sciences, Vol. 37, 2001, pp. 419-476.
9. Pomin, H. and Wagner, S., “Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover and Forward Flight,” Journal of Aircraft, Vol. 39, No. 5, September-October 2002, pp. 813-821.
10. Bhagwat, M. J., Moulton, M. A. and Caradonna, F. X. “Development of a CFD-Based Hover Performance Prediction Tool for Engineering Analysis,” Journal of the American Helicopter Society, Vol. 52, No. 3, July 2007, pp. 175-188.
11. Gagliardi, A., “CFD Analysis and Design of a Low-Twist, Hovering Rotor Equipped with Trailing-Edge Flaps,” Ph.D. Thesis, Department of Aerospace Engineering, University of Glasgow, August 2007.
12. Doerffer, P. and Szulc, O., “Numerical Simulation of Model Helicopter Rotor in Hover,” TASK Quarterly, Vol. 12, No. 3, pp. 227-236.
13. Marcel, L., “Numerical Study of Helicopter Blade-Vortex Mechanism of Interaction Using Large-Eddy Simulation,” Computers and Structures, Vol. 87, Jun. 2009, pp. 758-768.
14. Narramore, J. C., Tran, P. and Habashi, W. G., “Ice Accretion Computation for Full Tiltrotor Configuration,” AHS 59th Annual Forum, May 6-8, 2003, pp. 1433-1440.
15. Wan, T. and Kuan, H. C., “Aerodynamic Analysis of Helicopter Rotor Blades in Heavy Rain Condition,” 51th AIAA Aerospace Sciences Meeting, Grapevine, USA, Jan. 7-10, 2013.
16. Lian, Y., “Numerical Study of a Flapping Airfoil in Gusty Environments,” AIAA Paper 2009-3952, 2009.
17. Yang, G., “Numerical Analyses of Discrete Gust Response for an Aircraft,” Journal of Aircraft, Vol. 41, No. 6, November 2004, pp. 1353-1359.
18. Walker, J. F. and Jenkins, N., Wind Energy Technology, John Wiley & Sons, New York, NY, 1997.
19. Dunham, D. J., Dunham, R. E. and Bezos, G. M.,”A Summary of NASA Research on Effects of Heavy Rain on Airfoils,” AGARD-N92-21679 12-03, December 1991.
20. Tang, F. C., “Experimental Investigation of Heavy Rainfall Effect on 2-D High Lift Airfoil,” AGARD-CP- 496 17-01, Feb 1992.
21. Haines, P. A. and Luers, J. K., “Aerodynamic Penalties of Heavy Rain on a Landing Aircraft,” NASA CR-156885, 1982.
22. Bilanin, A. J., “Scaling Laws for Testing Airfoils under Heavy Rainfall,” Journal of Aircraft, Vol. 24, No.1, Jan. 1987, pp. 31-37.
23. Wan, T. and Pan, S. P., “Aerodynamic Efficiency Study under the Influence of Heavy Rain via Two-Phase Flow Approach,” Proceedings of the 27th International Congress of Aeronautical Sciences, Nice, France, September 19-24, 2010.
24. Valentine, J. R., and Rand, A. D., “A Lagrangian-Eulerian Scheme for Flow around an Airfoil in Rain,” Int. J. Multiphase Flow, Vol. 32, No. 1, 1995, pp. 639-648.
25. Dunham, R. E. Jr., “The Potential Influence of Rain on Airfoil Performance,” Von Karman Institute for Fluid Dynamics, 1987.
26. Ulbrich, C. W., “Natural Variations in the Analytical Form of the Raindrop Size Distribution,” Journal of Applied Meteorology, Vol. 22, 1983, pp. 1764-1775.
27. Willis, P. T., “Functional Fits to Some Observed Drop Size Distributions and Parameterization of Rain,” Journal of Atmospheric Sciences, Vol. 41, No. 9, 1984, pp. 1648-1661.
28. Willis, P. T. and Tattleman, P., “Drop-size Distributions Associates with Intense Rainfall,” Journal of Applied Meteorology, Vol. 28, 1989, pp. 3-14.
29. Markowitz, A. M., “Raindrop Size Distribution Expression,” Journal of Applied Meteorology, Vol. 15, 1976, pp. 1029-1031.
30. Bardina, J. E., Huang, P. G., and Coakley, T. J., “Turbulence Modeling Validation, Testing, and Development,” NASA TM-110446, April 1997.
31. Wan, T., S. P. Pan, and C. J. Chou, “Reinvestigation of High Lift Airfoil Under the Influence of Heavy Rain Effects,” 50th AIAA Aerospace Sciences Meeting, Nashville, USA, Jan. 9-12, 2012.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-03-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-03-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信