§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1802201913444000
DOI 10.6846/TKU.2019.00526
論文名稱(中文) 使用異丙醇與水進行靜電紡絲製備疏水型聚甲基丙烯酸甲酯與聚醋酸乙烯酯混摻之高分子次微米纖維
論文名稱(英文) Using 2-propanol and water to prepare hydrophobic poly(methyl methacrylate)/poly(vinyl acetate) blend submicron fibers by electrospinning
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 1
出版年 108
研究生(中文) 張慧怡
研究生(英文) Hui-Yi Chang
學號 605400554
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-12-21
論文頁數 50頁
口試委員 指導教授 - 張朝欽
委員 - 鄭廖平
委員 - 張旭賢
關鍵字(中) 靜電紡絲
聚甲基丙烯酸甲酯
聚醋酸乙烯酯
疏水性
共溶劑
異丙醇

關鍵字(英) electrospinning
poly(methyl methacrylate)
poly(vinyl acetate)
hydrophobic
cosolvents
2-propanol
water
第三語言關鍵字
學科別分類
中文摘要
本研究以異丙醇與蒸餾水為共溶劑使用靜電紡絲法製備疏水性高分子次微米纖維,分為聚甲基丙烯酸甲酯纖維與聚甲基丙烯酸甲酯/聚醋酸乙烯酯混摻纖維兩個部分。
在特定比例下溶解聚甲基丙烯酸甲酯,異於傳統使用的氯甲烷、二氯甲烷、甲苯等高危害性溶劑,利用靜電紡絲技術,獲得次微米/奈米纖維,直徑約0.65-0.85微米,並具有高疏水性,對水的接觸角可達133 °,經滴水測試可確定纖維不會被水溶解或破壞變形。
因聚甲基丙烯酸甲酯的材料特性偏剛硬脆斷,其所紡纖維易折斷,為了解決此問題,研究亦在環保的共溶劑中加入聚醋酸乙烯酯以提升柔軟性,降低複合材料之玻璃轉移溫度,靜電紡絲所獲得的纖維直徑約0.5-3微米,同樣具有高疏水性,對水的接觸角可達133 °,經滴水測試可確定纖維不被水溶解或破壞變形,期盼本研究之系統及製程能達到節能、減污及環保循環的特點。
英文摘要
In this study, it was adopted rubbing alcohol (2-propanol/water) as the solvent to prepare poly(methyl methacrylate) (PMMA) submicron fibers and PMMA/poly(vinyl acetate) (PVAc) blend submicron fibers by the electrospinning technique. The solvents commonly used to dissolve PMMA, such as acetone, tetrahydrofuran, chloroform, toluene, etc., are harmful and environmentally unfriendly. Therefore, the green and economical co-solvent system, 2-propanol + water, were employed. It was found that both PMMA and PMMA/PVAc solutions can be electrospun near room temperature to yield good quality fibers. By controlling the solution concentration and spinning parameters (e.g., voltage, diameter of needle, solution conductivity, etc.) fibers with diameters of 0.5~3 μm were obtainable. In addition, both electrospun PMMA and PMMA/PVAc mats were waterproof and demonstrated superb hydrophobicity with contact angles > 130 °, and the later has higher strength in terms of bendability.
第三語言摘要
論文目次
目錄
誌謝	I
中文摘要	II
英文摘要	III
目錄	IV
表目錄	VI
圖目錄	VII
第一章 序論	1
第二章 文獻回顧	3
2.1影響電紡的因素	3
2.2溶劑選擇	5
第三章 實驗部分	8
3.1實驗藥品	8
3.2實驗方法與流程	9
3.2.1 PMMA溶液製備	9
3.2.2 PMMA/PVAc溶液製備	9
3.2.3靜電紡絲	9
3.3實驗設備及儀器	10
第四章 結果與討論(Ι):電紡PMMA纖維	12
4.1高分子分子量及濃度之影響	12
4.2其餘電紡參數之影響	15
4.2.1電壓	15
4.2.2水的品質(導電度)	16
4.2.3紡絲時間	18
4.2.4不鏽鋼針徑	18
4.3防水測試	19
第五章 結果與討論(ΙΙ):電紡PMMA/PVAc纖維	20
5.1高分子分子量及濃度之影響	20
5.2製程與黏度之影響	22
5.3高分子溶液之黏度和濃度關係與表面張力、導電度之影響	25
5.4溶劑比例之影響	27
5.5高分子比例之影響	29
5.6物性分析	30
5.6.1防水測試	30
5.6.2彎折測試	31
5.6.3 FTIR、DSC、TGA	32
第六章 結論	34
參考文獻	35
附錄A	40
附錄B	45
附錄C	47
附錄D	48
附錄E	49
 
表目錄
表1-1靜電紡絲之應用[11,32]	2
表4-1不同品質的水為共溶劑得到之電紡結果	16
表5-1電紡3 wt%的製程差異比較	22
表5-2電紡4.5 wt%的製程差異比較	24
表5-3不同濃度的表面張力與導電度	26
表5-4不同濃度的導電度	26
表5-5不同溶劑比例的黏度、電壓、纖維直徑(PMMA/PVAc=1/1,w/w)	27
表5-6不同高分子重量比例(1/1之3 wt%為圖5-6,4.5 wt%為表5-2)	29
表5-7彎折測試項目	31
表A-1電紡PMMA重量平均分子量~120,000	43
表A-2電紡PMMA重量平均分子量~400,000	44
表B-1不同針徑比較(流速0.05 mL/min、電壓7.4 kV)	45
表E-1電紡PMMA/PVAc = 1/1(IPA:H2O = 7:2)	49
表E-2電紡PMMA/PVAc = 1/3的6 wt%	50
 
圖目錄
圖1-1靜電紡絲示意圖	1
圖1-2溶液受靜電感應示意圖	1
圖2-1靜電紡絲中各項因素[12]	3
圖2-2 PMMA-IPA-H2O三成份系統在25℃時平衡相圖[72]	5
圖2-3 PMMA-PVAc-IPA-H2O四成份系統在25℃時平衡相圖[73]	6
圖2-4異丙醇與水之共沸點氣/液相圖[74]	6
圖2-5異丙醇與水之密度/黏度變化圖[75]	7
圖3-1 靜電紡絲轉接套組組裝圖	9
圖3-2靜電紡絲機台、溫度控制系統(右下)、針筒推進器(幫浦)(右上)	11
圖4-1 PMMA不同分子量的ne值	12
圖4-2電紡1.5 wt% PMMA溶液所獲得之纖維(5.5 kV、0.05 mL/min)	13
圖4-3電紡1.6 wt% PMMA溶液所獲得之纖維(5.9 kV、0.05 mL/min)	14
圖4-4電紡1.5 wt% PMMA溶液所獲得之纖維(7.1 kV-蒸餾水-30分鐘)	15
圖4-5電紡1.5 wt% PMMA溶液所獲得之纖維(7.1 kV-去離子水)	16
圖4-6電紡1.5 wt% PMMA溶液所獲得之纖維(7.4 kV-去離子水)	17
圖4-7電紡1.5 wt% PMMA溶液所獲得之纖維(7.4 kV-自來水-22G)	17
圖4-8電紡1.5 wt% PMMA溶液紡絲10分鐘所獲得之纖維	18
圖4-9電紡1.6 wt% PMMA溶液所獲得之纖維,(左)滴水前,(右)滴水後	19
圖5-1電紡PMMA/PVAc 10 wt%溶液所獲得之纖維(8.5 kV、0.05 mL/min)	20
圖5-2電紡PMMA/PVAc 1.5 wt%溶液所獲得之纖維(11 kV、0.05 mL/min)	21
圖5-3電紡PMMA/PVAc 2 wt%溶液所獲得之纖維(8.5 kV、0.05 mL/min)	21
圖5-4高分子溶液之黏度與濃度分佈圖	25
圖5-5電紡7.8/2的3 wt%溶液所獲得之纖維	27
圖5-6電紡7/2的3 wt%溶液所獲得之纖維	28
圖5-7電紡6.5/2的3 wt%溶液所獲得之纖維	28
圖5-8電紡PMMA/PVAc = 3/1(3 wt%)所獲得之纖維	29
圖5-9電紡PMMA/PVAc = 1/3(4.5 wt%)所獲得之纖維	29
圖5-10電紡3 wt% PMMA/PVAc溶液所獲得之纖維,(左)滴水前,(右)滴水後	30
圖5-11彎折測試:左邊PMMA/PVAc之纖維,右邊PMMA之纖維	31
圖5-12 PMMA與PVAc高分子原料與紡絲成品之FTIR-ATR光譜圖	32
圖5-13高分子原料與紡絲成品的二次升溫DSC熱分析圖	33
圖5-14高分子原料與紡絲成品的TGA熱分析圖	33
圖A-1電紡5 wt% PMMA溶液所獲得之纖維	42
圖A-2電紡8 wt% PMMA溶液所獲得之纖維	42
圖A-3電紡1 wt% PMMA溶液所獲得之纖維	42
圖A-4電紡1.2 wt% PMMA溶液所獲得之纖維	42
圖B-1電紡1.5 wt% PMMA溶液所獲得之纖維(7.4 kV-自來水-24G)	45
圖B-2電紡1.5 wt% PMMA溶液所獲得之纖維(7.4 kV-自來水-25G)	46
圖C-1電紡9 wt% PVA溶液所獲得之纖維,(左)滴水前,(右)滴水後	47
圖D-1加熱一小時,冷卻半小時,攪拌五天的4.5 wt%溶液之黏度	48
參考文獻
參考文獻
1.	X. Yan, M. Gevelber, “Analysis of electrospinning nanofibers : Diameter distribution,  process dynamics, and control”, ASME International Mechanical Engineering Congress and Exposition, 2008, 13, 25-32
2.	F. Cengiz, I. Krucińska, E. Gliścińska, M. Chrzanowski, F. Göktepe, “Comparative analysis of various electrospinning methods of nanofibre formation”, Fibers & Textiles in Eastern Europe, 2009, 17, 13-19
3.	N. Bhardwaj, S. C. Kundu, “Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, 2010, 28, 325-347
4.	J. H. Yu, “Electrospinning of polymeric nanofiber materials: Process characterization and unique applications”, Ph.D. thesis, Massachusetts Institute of Technology, 2007
5.	C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, M. Edirisinghe, “Electrospinning versus fibre production methods: from specifics to technological convergence”, Chemical Society Reviews, 2012, 41, 4708-4735
6.	R. Casasola, N. L. Thomas, A. Trybala, S. Georgiadou, “Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter”, Polymer, 2014, 55, 4728-4737
7.	N. A. Zubair, N. A. Rahman, H. N. Lim, Y. Sulaiman, “Production of conductive PEDOT-coated PVA-GO composite nanofibers”, Nanoscale Research Letters, 2017 12, 113
8.	S. Basu, N. Gogoi, S. Sharma, M. Jassal, A. K. Agrawal, “Role of elasticity in control of diameter of electrospun PAN nanofibers”, Fibers and Polymers, 2013, 14, 950-956
9.	T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, “Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers”, European Polymer Journal, 2005, 41, 409-421
10.	W. Khoo, C. T. Koh, “A review of electrospinning process and microstructure morphology control”, ARPN Journal of Engineering and Applied Sciences, 2016, 11, 7774-7781
11.	H. Karakaş, “Electrospinning of nanofibers and their applications”, 2BFuntex MDT ‘Electrospinning’
12.	X. Yan, “Electrospinning of nanofibers: Analysis of diameter distribution and process dynamics for control”,Ph.D. thesis, Boston University College of Engineering, 2011
13.	Y. Yang, Z. Jia, J. Liu, Q. Li, L. Hou, L. Wang, Z. Guan, “Effect of electric field distribution uniformity on electrospinning”, Journal of Applied Physics, 2008, 103, 104307
14.	J. Stanger, N. Tuckerand, M. Staiger, “Electrospinning”, I-Smithers Rapra publishing (UK), 2005, 16
15.	J. R. Dias, P. L. Granja, P. J. Bártolo, “Advances in electrospun skin substitutes”, Progress in Materials Science, 2016, 84, 314-334
16.	J. Y. Park, I. H. Lee, G. N. Bea, “Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent”, Journal of Industrial and Engineering Chemistry, 2008, 14, 707-713
17.	Q. Wei, D. Tao, Y. Xu, “Functional nanofibers and their applications”, Woodhead Publishing, 2012

18.	Z.-M. Huang, Y.-Z. Zhang, M. Kotakic, S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, 2003, 63, 2223-2253
19.	J. Cheng, Y. Jun, J. Qin, S. H. Lee, “Electrospinning versus microfluidic spinning of functional fibers for biomedical applications”, Biomaterials, 2017, 114, 121-143
20.	B. Ding, J. Yu, “Electrospun nanofibers for energy and environmental applications”, Springer, Nanostructure Science and Technology, 2014
21.	B. Ding, M. Wang, X. Wang, J. Yub, G. Suna, “Electrospun nanomaterials for ultrasensitive sensors”, Materialstoday, 2010, 13, 16-27
22.	N. Liu, G. Fang, J. Wan, H. Zhou, H. Long, X. Zhao, “Electrospun PEDOT: PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity”, Journal of Materials Chemistry, 2011, 21, 18962
23.	J. Choia, J. Leea, J. Choia, D. Jungb, S. E. Shima, “Electrospun PEDOT: PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing”, Synthetic Metals, 2010, 160, 1415-1421
24.	K. M. Manesh, A. I. Gopalan, K.-P. Lee, P. Santhosh, K.-D. Song, D.-D. Lee, “Fabrication of functional nanofibrous ammonia sensor”, IEEE Transactions on Nanotechnology, 2007, 6, 513-518
25.	M. Noruzi, “Electrospun nanofibres in agriculture and the food industry: a review”, Journal of the Science of Food and Agriculture, 2016, 96, 4663-4678
26.	Kenry, C. T. Lim, “Nanofiber technology: current status and emerging developments”, Progress in Polymer Science, 2017, 70, 1-17
27.	Y. Ishii, S. Satozono, R. Kaminose, M. Fukuda, “Origin of high propagation loss in electrospun polymer nanofibers”, APL Material, 2014, 2, 006104
28.	L. E. Ocola1, M. Costales, D. J. Gosztola1, “Development characteristics of polymethyl methacrylate in alcohol/water mixtures: A lithography and Raman spectroscopy study”, Nanotechnology, 2016, 27, 035302
29.	Z. Li, J.-W. Zhang, L. G. Yu, “Electrospun porous nanofibers for electrochemical energy storage”, Journal of Materials Science, 2017, 52, 6173-6195
30.	Z. He, Q. Cao, B. Jing, X. Wang,Y. Deng, “Gel electrolytes based on poly(vinylidenefluorideco-hexafluoropropylene)/thermoplastic polyurethane/poly(methyl methacrylate) with in situ SiO2 for polymer lithium batteries”, RSC Advances, 2017, 7, 3240-3248
31.	S. T. Aruna, L. S. Balaji, S. S. Kumar, B. S. Prakash, “Electrospinning in solid oxide fuel cells – A review”, Renewable and Sustainable Energy Reviews, 2017, 67, 673-682
32.	S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, Hak Yong Kim, “Electrospun nanofibers: New generation materials for advanced applications”, Materials Science and Engineering B, 2017, 217, 36-48
33.	Y. Yu, B. D. Kieviet, E. Kutnyanszky, G. J. Vancso, S. Beer, “Cosolvency-Induced switching of the adhesion between poly(methyl methacrylate) brushes”, ACS Macro Letters, 2015, 4, 75-79
34.	S. H. Wang, L. G. Sun, B. Zhang, C. Wang, Z. W. Li, J. Z. He, J. Zhang, Y. Xie, “Preparation of monodispersed silica spheres and electrospinning of poly(vinyl alcohol)/silica composite nanofibers”, Polymer Composites, 2011, 32, 347-352
35.	G. Salimbeygi, K. Nasouri, A. M. Shoushtari, R. Malek, F. Mazaheri, “Fabrication of polyvinyl alcohol/multi-walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material”, Micro & Nano Letters, 2013, 8, 455-459

36.	R. M. Nezarati, M. B. Eifert, C.-H. Elizabeth, “Effects of humidity and solution viscosity on electrospun fiber morphology”, Tissue Engineering: Part C, 2013, 19, 810-819
37.	S. Khorshidi, A. Solouk, H. Mirzadeh, S. Mazinani, J. M. Lagaron, S. Sharifi, S. Ramakrishna, “A review of key challenges of electrospun scaffolds for tissue-engineering applications”, Journal of Tissue Engineering and Regenerative Medicine, 2015, 10, 715-738
38.	M. Zhang, X. Zhao, G. Zhang, G. Wei, Z. Su, “Electrospinning design of functional nanostructures for biosensor applications”, Journal of Materials Chemistry B, 2017, 5, 1699-1711
39.	X. Lu, C. Wang, F. Favier, .N. Pinna, “Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance”, Advanced Energy Materials, 2016, 1601301
40.	K. Wei, K.-O. Kim, K.-H. Song, C.-Y. Kang, J. S. Lee, M. Gopiraman, I. S. Kim, “Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: A highly flexible electrode material for supercapacitor”, Journal of Materials Science & Technology, 2017, 33, 424-431
41.	A. Laforgue, L. Robitaille, “Production of conductive PEDOT nanofibers by the combination of electrospinning and vapor-phase polymerization”, Macromolecules, 2010, 43, 4194-4200
42.	X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, A. Hu, “Electrospinning of nanofibers and their applications for energy devices”, Journal of Nanomaterials, 2015, 140716
43.	G. Sun, L. Sun, H. Xie, J. Liu, “Electrospinning of nanofibers for energy applications”, Nanomaterials, 2016, 6, 129
44.	P. S. Suja, C. R. Reshmi, P. Sagitha, A. Sujith, “Electrospun nanofibrous membranes for water purification”, Polymer Reviews, 2017, 57, 467-504
45.	X. Wang, J. Yu, G. Sun, B. Ding, “Electrospun nanofibrous materials: a versatile medium for effective oil/water separation”, Materialstoday, 2016, 19, 403-414
46.	J.-J. Li, Y.-N. Zhou, Z.-H. Luo, “Smart fiber membrane for pH-induced oil/water separation”, ACS Applied Materials & Interfaces, 2015, 7, 19643-19650
47.	S. S. Sreedhara, N. R. Tata, “A novel method for measurement of porosity in nanofiber mat using pycnometer in filtration”, Journal of Engineered Fibers and Fabrics, 2013, 8, 132-137
48.	J.-J. Li, L.-T. Zhu, Z.-H. Luo, “Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation”, Chemical Engineering Journal, 2016, 287, 474-481
49.	M. Zhu, J. Han, F. Wang, W. Shao, R. Xiong, Q. Zhang, H. Pan, Y. Yang, S. K. Samal, F. Zhang, C. Huang, “Electrospun nanofibers membranes for effective air filtration”, Macromolecular Materials and Engineering, 2017, 302, 1600353
50.	F. K. Ko, “Chapter 21 Nanofiber Technology: Bridging the Gap between Nano and Macro World in Nanomaterials handbook”, CRC Press , 2017
51.	H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning”, Polymer, 1999, 40, 4585-4592
52.	Z. M. Wang, “Chapter 2 effects of working parameters on electrospinning in One-Dimensional nanostructures”, Springer, 2008
53.	C. Drew, X. Wang, L. A. Samuelson, J. Kumar, “The effect of viscosity and filler on electrospun fiber morphology”, Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2003, A40, 1415-1422

54.	P. Dayal, “Dynamics and morphology development in electrospinning of polymer solutions”, Ph.D. thesis, The Graduate Faculty of The University of Akron, 2007
55.	O. Koysuren, H. N. Koysuren, “Characterization of poly(methyl methacrylate) nanofiber mats by electrospinning process”, Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 2016, 53, 691-698
56.	J. D. Schiffman, C. L. Schauer, “A review: Electrospinning of biopolymer nanofibers and their applications”, Polymer Reviews, 2008, 48, 317-352
57.	R. Sood, S. Cavaliere, D. J. Jones, J. Rozière, “Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes”, Nano Energy, 2016, 26, 729-745
58.	S. S. Ray, S.-S. Chen, C.-W. Li, N. C. Nguyenac, H. T. Nguyenac, “A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application”, RSC Advances, 2016, 6, 85495-85514
59.	M. Nasir, H. Matsumoto, T. Danno, M. Minagawa, T. Irisawa, M. Shioya, A. Tanioka, “Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition”, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44, 779-786
60.	F. Bueche, “Viscosity of polymers in concentrated solution”, The Journal of Chemical Physics, 1956, 25, 599-600
61.	S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit”, Polymer, 2005, 46, 3372-3384
62.	S. L. Shenoy, W. D. Bates, G. Wnekb, “Correlations between electrospinnability and physical gelation”, Polymer, 2005, 46, 8990-9004
63.	M. G. McKee, G. L. Wilkes, R. H. Colby, T. E. Long, “Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters”, Macromolecules, 2004, 37, 1760-1767
64.	A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters, 2004, 58, 493-497
65.	Y. Liu, J.-H. He, J.-Y. Yu, H.-M. Zeng, “Controlling numbers and sizes of beads in electrospun nanofibers”, Polymer International, 2008, 57, 632-636
66.	P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, “Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent”, Polymer, 2005, 46, 4799-4810
67.	E. R. Kenawya, J. M. Laymana, J. R. Watkinsa, G. L. Bowlin, J. A. Matthews, D. G. Simpsonc, G. E. Wnek, “Electrospinning of poly(ethylene-co-vinyl alcohol) fibers”, Biomaterials, 2003, 24, 907-913
68.	J. Gonzalez-Benito, J. L. Koenig, “FTIR imaging of the dissolution of polymers. 4. Poly(methyl methacrylate) using a cosolvent mixture (carbon tetrachloride/methanol)”, Macromolecules, 2002, 35, 7361-7367
69.	R. J. Groele, P. D. Krasicky, S.-W. Chun, J. Sullivan, F. Rodriguez, “Dissolution rates of poly ( methyl methacrylate) in mixtures of nonsolvents”, Journal of Applied Polymer Science, 1991, 42, 3-8
70.	Y.-F. Qian, Y. Su, X.-Q. Li, H.-S. Wang, C.-L. He, “Electrospinning of polymethyl methacrylate nanofibres in different solvents”, Iranian Polymer Journal, 2010, 19(2), 123-129
71.	Wahyudiono, K. Okamoto, S. Machmudah, H. Kanda, M. Goto, “Generation of multihollow structured poly(methyl methacrylate) fibers by electrospinning under pressurized CO2”, Polymer Engineering and Science, 2016, 56, 752-759
72.	L. P. Cheng, H. Y. Shaw, “Phase behavior of a water/2-propanol/poly(methyl methacrylate) cosolvent system”, Journal of Polymer Science: Part B: Polymer Physics, 2000, 38, 747-754
73.	H.-S. Huag, “Preparation of poly(methy1 methacrylate)/poly(viny1 acetate) composite membrane by cosolvement system”, MS thesis, Tamkang University, 2002
74.	http://www.separationprocesses.com/Distillation/DT_Data/PD_054.htm
75.	T. T. Ngo, T. L. Yu, H.-Li Lin, “Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance”, Journal of Power Sources, 2013, 225, 293-303
76.	M. R. H. M. Haris, S. Kathiresan, S. Mohanc, “FT-IR and FT-Raman Spectra and Normal Coordinate Analysis of Poly methyl methacrylate”, Der Pharma Chemica, 2010, 2, 316-323
77.	K.B. R. Dev, R. Madivanane, “Normal Coordinate Analysis of Poly Vinyl Acetate”, Engineering Science and Technology: An International Journal, 2012, 2, 795-799
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信