淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1802201421010800
中文論文名稱 動脈竇對雙葉瓣以及三葉片心瓣關閉的影響
英文論文名稱 The effect of the Sinus of valsalva on the closing motion of a bileaflet and a trileaflet
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 102
學期 1
出版年 103
研究生中文姓名 陳曉鐘
研究生英文姓名 Shiao-zhong Chen
學號 601480030
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2013-01-10
論文頁數 74頁
口試委員 指導教授-盧博堅
委員-丁大為
委員-張正興
中文關鍵字 數值模擬  機械心瓣  瓣膜  主動脈 
英文關鍵字 numerical simulation  mechanical heart  valve  Aorta 
學科別分類 學科別應用科學環境工程
中文摘要 現代人的飲食習慣逐漸改變,油脂食物的攝取明顯增加,造成身體上的心血管傷害也越來越大,甚至心血管疾病在2010年已經在國人死亡病因中位居前三名,其中包括主動脈瓣膜受損所產生的心血管疾病,其也是來自於油脂食物攝取過多或不運動所導致。而辦模受損必須在危及生命前動手術置換人工機械心瓣,而某些病患因為心臟瓣膜的疾病而必須進行心臟瓣膜移植手術之時,可能因為手術的錯位導致主動脈竇受損或破損而必須切除主動脈上的竇,使的主動脈剩為圓管狀而非人體原先的主動脈結構,而缺乏主動脈竇的主動脈管會不會影響到血液作用在人工心瓣的壓力、血液通行速度以及在主動脈管流場流動的順暢度則是要討論及研究的主要問題。本實驗利用數值模擬事業軟體fluent,模擬SJM雙葉機械心瓣和TRI三葉機械心瓣在無竇主動脈流場的脈動中探討心瓣開啟和關閉所花費的時間,並和兩種不同的主動脈竇所模擬的流場作數據比對,一種為軸對稱型的主動脈竇,另一種為三個半球型的主動脈竇,希望此研究能夠增加日後的學者對心瓣在不同主動脈竇下更深入的認知,以及在三葉心瓣的研發上有更深遠的助益和進展。
英文摘要 Modern people are gradually changed in eating habits, and more people prefer eating grease food,this inclination could lead to more diseases in cardiovascular.This condition causes damages of aorta valve and must do a artificial mechanical heart valve replacement surgery before life-threatening , and some patients with valvular heart disease must be carried out immediately. When errors occurred during valve replacement surgery and injured the aorta sinus,it must be resect and sew up,and it became like a tube.The aorta with no sinus in body may cause hemolysis and thrombosis when valves are opening and closing.We must analyse what would be happen in very pulsation,so we use the Commercial software Fluent to simulate the aorta pulsation without sinus in bileaf let and trileaflet and to find the differences among the different sinus of aorta. This simulation hopes useful in future study of trileaflet.
論文目次 目錄
第一章 緒論..............................................1
1-1 前言..................................................1
1-2 研究動機及目的........................................5
1-3 研究歷程..............................................7
第二章 數值模擬方法的製作程序..........................9
2-1繪製模型...............................................9
2-2 流固耦合的模擬計算...................................10
2-3邊界條件及參數的設置..................................12
2-4分析結果處理..........................................13
第三章 結果與討論........................................14
3-1 心瓣運作機制.........................................14
3-2速度與渦度流場分析....................................18
3-3無竇主動脈對三竇以及軸對稱形竇之模擬心瓣流場比較......23
第四章 結果與討論........................................25
參考文獻.................................................29


圖目錄...................................................31
圖1-1、本研究模擬所採用之人工機械心瓣實體................31
圖1-2、人工生物瓣膜-豬心瓣...............................31
圖1-3、人工機械心瓣......................................32
圖2-1、模擬計算域示意圖..................................33
圖2-2、一個周期之主動脈入流端流量及出流端壓力邊界條件....34
圖2-3、5個週期心瓣轉動角度變化...........................35
圖3-1、第5週期主動脈輸出流量與心瓣轉動角度...............36
圖3-2、第5週期心瓣之轉動角速度...........................37
圖3-3、第5週期心瓣入流端與出流端之壓力差.................38
圖3-4、Contours of velocity magnitude (time = 360ms - 480ms) in the middle plane over the 5th cardiac cycle for SJM valve....................................................39
圖3-5、Contours of velocity magnitude (time = 500ms - 620ms) in the middle plane over the 5th cardiac cycle for SJM valve....................................................40
圖3-6、Contours of velocity magnitude (time = 640ms - 760ms) in the middle plane over the 5th cardiac cycle for SJM valve....................................................41
圖3-7、Contours of velocity magnitude (time = 360ms - 480ms) in the middle plane over the 5th cardiac cycle for TRI valve....................................................42
圖3-8、Contours of velocity magnitude (time = 500ms - 620ms) in the middle plane over the 5th cardiac cycle for TRI valve....................................................43
圖3-9、Contours of velocity magnitude (time = 640ms - 760ms) in the middle plane over the 5th cardiac cycle for TRI valve....................................................44
圖3-10、Contours of vorticity magnitude (time = 360ms - 480ms) in the middle plane over the 5th cardiac cycle for SJM valve................................................45
圖3-11、Contours of vorticity magnitude (time = 500ms - 620ms) in the middle plane over the 5th cardiac cycle for SJM valve................................................46
圖3-12、Contours of vorticity magnitude (time = 640ms - 760ms) in the middle plane over the 5th cardiac cycle for SJM valve................................................47
圖3-13、Contours of vorticity magnitude (time = 360ms - 480ms) in the middle plane over the 5th cardiac cycle for TRI valve................................................48
圖3-14、Contours of vorticity magnitude (time = 500ms - 620ms) in the middle plane over the 5th cardiac cycle for TRI valve................................................49
圖3-15、Contours of vorticity magnitude (time = 640ms - 760ms) in the middle plane over the 5th cardiac cycle for TRI valve................................................50
圖3-16、Velocity profiles at phase B over the 5th cardiac cycle for SJM valve......................................51
圖3-17、Velocity profiles at phase C over the 5th cardiac cycle for SJM valve......................................52
圖3-18、Velocity profiles at phase D over the 5th cardiac cycle for SJM valve......................................53
圖3-19、Velocity profiles at phase E over the 5th cardiac cycle for SJM valve......................................54
圖3-20、Velocity profiles at phase F over the 5th cardiac cycle for SJM valve......................................55
圖3-21、Velocity profiles at phase B over the 5th cardiac cycle for TRI valve......................................56
圖3-22、Velocity profiles at phase C over the 5th cardiac cycle for TRI valve......................................57
圖3-23、Velocity profiles at phase D over the 5th cardiac cycle for TRI valve......................................58
圖3-24、Velocity profiles at phase E over the 5th cardiac cycle for TRI valve......................................59
圖3-25、Velocity profiles at phase F over the 5th cardiac cycle for TRI valve......................................60
圖3-26、t=439ms於PhaseB SJM主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................61
圖3-27、t=500ms於PhaseC SJM主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................62
圖3-28、t=560ms於PhaseD SJM主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................63
圖3-29、t=655ms於PhaseE SJM主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................64
圖3-30、t=454ms於PhaseB TRI主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................65
圖3-31、t=500ms於PhaseC TRI主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................66
圖3-32、t=560ms於PhaseD TRI主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................67
圖3-33、t=662ms於PhaseE TRI主動脈竇之流場情形與Li et al和Li TL之結果比較.............................................68
圖3-34、SJM心瓣在三種不同的竇之角度位置之開關時間比較....69
圖3-35、TRI心瓣在三種不同的竇之角度位置之開關時間比較....70
圖3-36、SJM心瓣在三種不同的竇之開關期間速度之比較........71
圖3-37、TRI心瓣在三種不同的竇之開關期間速度之比較........72
表目錄
表3-1、Time history and the maximum values of velocity for the SJM valve during each phase....................................................73
表3-2、Time history and the maximum values of velocity for the TRI valve during each phase....................................................74
參考文獻 1.Pibarot P, Dumesnil JG:Low-Flow, Low-Gradient Aortic Stenosis With Normal and Depressed Left Ventricular Ejection Fraction. JACC Vol. 60, No. 19, 2012 November 6, 2012:1845–53
2.Schoen FJ, Kujovich JL, Levy RJ, Sutton MS: Bioprosthetic Valve failure cardiovascular Clinics 18:289-317,1988.
3.Simon HA, Dasi LP, Leo H-L, Yoganathan AP: Spatio-temporal Flow Analysis in Bileaflet Heart Valve Hinge Regions: Potential Analysis for Blood Element Damage. Annals of Biomedical Engineering 35: 1333-1346, 2007.
4.Claiborne TE, Slepian MJ, Hossainy S, Bluestein D: Polymeric trileaflet prosthetic heart valves: Evolution and path to clinical reality. Expert Rev Med Devices 9: 577–594, 2012.
5.Yoganathan AP, He Z,Jones SC:Fluid mechanics of heart valves.Annual review of bio medical engineering 6:331-362,2004.
6.Hammond G.L., Geha A.S., Kopf G.S., and Hashim S.W.. Biological versus mechanical valves. J. Thorac Cardiovasc Surg. Vol.93, 182-198, 1987.
7.Rahimtoola SH: Choice of prosthetic heart valve in adults an update. J Am Coll Cardiol 55: 2413–2426, 2010.
8.Garrsion LA, Lamson TC, Deutsch S, Geselowitz DB, Gaumond RP, Tarbell JM: An in-vitro investigation of prosthetic heart valve
9.Toshimasa Tokuno. Cavitation Inception of Deceleration Surfaces. Ph. D. Thesis, University of Rice, 1978.
10.Lo CW,Lu PC, Liu JS, Li CP,Hwang NHC:Squeeze Flow Measurements in Mechanical Heart Valves.ASAIO Journal 54:156-162,2008.
11.Bluestein D,Einav S,Hwang NHC:A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis. Journal of Biomechanics 27:1369-1387,1994.
12.Bokros JC, LaGrange LD, Schoen FJ: Control of structure of carbon for use in bioengineering, in Walker PL (ed), Chemistry and Physics of Carbon. New York: Marcel Dekker, 103-171, 1972
13.Bachmann C, Kini V,Deutsch S, Fontaine AA,Tarbell JM: Mechanisms of cavitation and the formation od stable bubbles on the Bjork-Shiley monostrut prosthetic heart valve.The Journal of Heart Valve Disease 11:105-113,2002.
14.Li CP, Lu PC, Liu JS, Lo CW, Hwang NHC: Role of vortices in cavitation formation in the flow across a mechanical heart valve.The Journal of Heart Valve Disease 17:435-445,2008.
15.De Hart. J,. Pelers. G,W,M,. Schreurs, P,J,G, and Baaijens. F.P,T (2003) "A three-dimensional computational analy,sis of fluid-struclure inleraction in ihe aortic valve", Journal of Biomechunics36(1), 103-112.
16.Choi, C., and Kim, C., 2009, “Numerical Analysis on the Hemodynamics and Leaflet Dynamics in a Bileaflet Mechanical Heart Valve Using a Fluid-Structure Interaction Method,” ASAIO J., 55, pp. 428–437.
17.Dumont K, Stijnen JMA, Vierendeels J,Van De Vosse FN, Verdonck PR:Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in Fluent. Computer Methods in Biomechanics and Biomedical Engineering 7:139-146,2004.
18.Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A: Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. Journal of Biomechanics 41: 2539-2550, 2008.
19.Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M: 3-D simulation of St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experiment validation. J Heart Valve Dis 13: 804-813, 2004.
20.Dumont K, Stijnen JMA, Vierendeels J, Van De Vosse FN, Verdonck PR: Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in Fluent. Computer Methods in Biomechanics and Biomedical Engineering 7: 139-146, 2004.
21.Dumont K, Vierendeels J, Verdonck PR: Feasibility study of the dynamic mesh model in Fluent for fluid-structure interaction of a heart valve, in Brebbia CA, Arnez ZM, Solina F, Stankovski V (ed), Simulations in Biomedicine V. Advances in Computational
22.Vierendeels J, Dumont K, Dick E, Verdonck PR: Stabilization of a fluid-structure coupling procedure for rigid body motion. Proceeding of the 33rd AIAA Fluid Dynamics Conference and Exhibit 3720, 2003.
23.Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a new trileaflet mechanical heart vakve. ASAIO J. 2011;57:188-96.
24.D. C. Wilcox. Multiscale model for turbulent flows. American Institute of Aeronautics Journal 26(11): 1311-20, 1988.
25.S. V. Patankar, D. B. Spalding , “ A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows ”, Int. J. Heat Transfer, vol.15, pp.1787-1806, 1972.
26.Bang JS, Yoo SM, Chang NyungKim(2006), Characteristics of Pulsatile Blood Flow Through the Bileaflet Mechanical Heart Valve Instlled in Two Different Types of Blood Vessels and Pressure of Blood Flow, Journal of american society for artificial internal organs Vol. 52 No.3 pp.234-242
27.蔡伯昌, 2012,在不同主動脈形狀下機械心瓣的流動特性, 淡江大學水資源及環境工程學系碩士論文.
28.Li CP, Lu PC. Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs. 2012.
29.李德倫, 2012, 雙葉及三葉機械心瓣流場流固耦合數值計算, 淡江大學水資源及環境工程學系碩士論文.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-02-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-02-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信