§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1802201313315200
DOI 10.6846/TKU.2013.00643
論文名稱(中文) 微蒸餾塔之性能模擬研究
論文名稱(英文) Simulation study of the performance of micro distillation columns
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 1
出版年 102
研究生(中文) 陳瑞彬
研究生(英文) Reui-Bin Chen
學號 600400112
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-01-18
論文頁數 103頁
口試委員 指導教授 - 張煖(nhchang@mail.tku.edu.tw)
委員 - 陳錫仁(hjchen@mail.tku.edu.tw)
委員 - 張煖(nhchang@mail.tku.edu.tw)
委員 - 程學恆(shcheng@thu.edu.tw)
關鍵字(中) 薄膜
蒸餾
模式
微通道
關鍵字(英) membrane
distillation
modeling
microchannel
第三語言關鍵字
學科別分類
中文摘要
本論文以模擬方式探討微蒸餾系統之性能。本研究在Aspen Custom ModelerR平台上,建立精餾段、氣提段、冷凝器與再沸器之數學模式,並探討系統之穩態特性、參數影響與阻力分析,且與傳統塔及中空纖維蒸餾塔進行比較。
在塔內特性分佈方面,微蒸餾塔之操作可獲較接近線性之溫度與組成分佈,亦即微蒸餾塔可較充分利用塔之硬體空間,因此其HTU僅需數公分。然而,其有效平衡曲線偏離於平衡曲線甚遠,不利於能源耗用之表現,可用能損耗分析也確認了此結果。此外,因氣液相無法直接接觸交流也導致氣、液通道內分別會有少量液相與氣相之存在。
在參數影響分析方面,結果顯示,對於產物純度之影響以再沸比、迴流比和薄膜厚度較其他條件明顯,而對於塔之熱負荷量而言,則以系統進料流量和薄膜孔徑有較明顯之影響。
阻力分析方面,發現質傳係數對產物純度和熱負荷量之影響比熱傳係數大,且因質傳阻力主要落在液相,故微蒸餾塔性能提升之關鍵即在於液體通道質傳係數之改善。
微蒸餾塔與傳統塔之比較部份,在達到相同產物純度條件下,HTU僅需數公分,大幅優於傳統塔之數十公分,主要質傳阻力分別在於液相與氣相,也是重要差異。微蒸餾塔與中空纖維蒸餾塔之性能則較接近,例如HTU與單位體積之介面面積,然而質傳阻力之分佈特性則不一致,微蒸餾塔之總質傳係數較高,且薄膜層阻力相對不重要,中空纖維塔之薄膜層阻力則為最主要阻力或與液相阻力相當。
英文摘要
This thesis investigates the performance of micro distillation columns (MDC) by simulation study. The mathematical models of the rectifying section, stripping section, condenser and reboiler are built on the Aspen Custom Modeler R platform. The steady state characteristics of the distillation system, parametric study of operating and device variables, heat and mass transfer resistances are analyzed. The micro distillation column, conventional distillation columns (CC) and hollow fiber distillation columns (HFC) are compared for their transfer characteristics and separation performance.
On the internal profiles of the micro distillation column, the operation gives close to linear temperature and composition distributions, indicating more effective utilization of the column space and leads to a HTU (height of a transfer unit) of only a few centimeters. However, the effective equilibrium curve significantly deviates from the equilibrium curve, which is not beneficial to the energy utilization. The exergy analysis confirms this result.
On the parameters influence study, the boilup ratio, reflux ratio and membrane thickness are the most significant factors affecting the product purity. For heat duties of the column, feed rata and membrane pore size give greater influence. The resistance analysis reveal that mass transfer resistance is much important than heat transfer resistance, in particular the liquid phase resistance. The improvement of the column should be focused on the mass transfer coefficient of the liquid channels.
To achieve the same product purity, the HTUs of MDC and CC are a few centimeters and tens of centimeters. The key mass transfer resistances of MDC and CC lie in the liquid phase and vapor phase, respectively. The characteristics of MDC and HFC are similar, such as the HTU and interface area per unit volume, but the distributions of mass transfer resistance are quite different. For MDC, the overall mass transfer coefficient is greater and the membrane resistance is not significant, however, the major resistance of HFC is on the membrane and liquid phase.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	IX
第一章	緒論	1
1.1	前言	1
1.2	研究動機與範疇	2
1.3	論文組織與架構	4
第二章	文獻回顧	5
2.1	微化學技術	5
2.2	微蒸餾系統	8
第三章	微蒸餾系統模式建立	10
3.1	數學模式	10
3.1.1	精餾段與氣提段	10
3.1.2	再沸器與冷凝器	18
3.2	熱力學模式	23
3.3	物理與輸送性質	23
3.3.1	密度	23
3.3.2	黏度	24
3.3.3	比熱	25
3.3.4	熱焓	26
3.3.5	熱傳導係數	27
3.3.6	擴散係數	28
3.3.7	流體相熱傳係數	29
3.3.8	流體層對流質傳係數	29
3.3.9	薄膜層輸送性質	30
3.3.10	壓降	30
3.4	模式求解	31
3.5	模式驗證	31
第四章	微蒸餾系統基本個案分析	37
4.1	微蒸餾塔系統說明	37
4.2	微蒸餾塔基本個案模擬結果	39
4.3	微蒸餾塔與傳統塔之性能比較	50
第五章	參數影響分析	64
5.1	操作與模組參數	64
5.2	薄膜參數	71
第六章	阻力影響分析	77
6.1	液體側	85
6.2	薄膜	89
第七章	結論與建議	93
符號說明	95
參考文獻	100
 
圖目錄
圖1.1不可逆性概念	2
圖1.2板鰭型微裝置	3
圖1.3含內部熱交換之微通道蒸餾塔	3
圖2.1 甲醇微燃料處理系統	7
圖2.2 微裝置之傳輸係數與落膜式微裝置分析	8
圖2.3單一曲折通道微裝置	9
圖2.4 Velocys之微通道蒸餾裝置	9
圖3.1 微蒸餾塔系統	10
圖3.2 薄膜與氣液流體層介面	11
圖3.3精餾段熱質傳	12
圖3.4薄膜內質傳機制	15
圖3.5氣提段熱質傳	15
圖3.6再沸器分區模式	18
圖3.7冷凝器分區模式	21
圖3.8 中空纖維模組蒸餾塔實驗裝置(Koonaphapdeeler et al., 2008)	32
圖3.9 中空纖維模組模擬與實驗結果比較	34
圖3.10 中空纖維模組Module 1之塔內流量分佈	35
圖3.11 中空纖維模組Module 1之塔內溫度分佈	35
圖3.12 中空纖維模組Module 1之塔內組成分佈	36
圖3.13 中空纖維模組Module 1之塔內通量分佈	36
圖3.1 微蒸餾塔系統	37
圖4.1基本個案之塔內流量分佈	42
圖4.2基本個案之塔內溫度分佈	43
圖4.3主流體與飽和溫度分佈	44
圖4.4基本個案之塔內組成分佈	45
圖4.5基本個案之塔內壓力分佈	46
圖4.6基本個案之塔內通量分佈	48
圖4.7基本個案之y-x圖	49
圖4.8傳統塔之設計流程	51
圖4.9微蒸餾塔與傳統塔之塔內流量分佈	55
圖4.10微蒸餾塔與傳統塔之塔內溫度分佈	56
圖4.11微蒸餾塔與傳統塔之塔內組成分佈	57
圖4.12微蒸餾塔與傳統塔之塔內壓力分佈	58
圖4.13微蒸餾塔與傳統塔之平衡與操作曲線	59
圖4.14蒸餾塔系統之可用能進出	63
圖5.1操作與模組參數對產物純度之影響	65
圖5.2操作與模組參數對熱負荷量之影響	66
圖5.3薄膜參數對產物純度之影響	72
圖5.4薄膜參數對熱負荷量之影響	73
圖6.1熱傳係數對產物純度之影響	79
圖6.2熱傳係數對熱負荷量之影響	79
圖6.3質傳係數對產物純度之影響	80
圖6.4質傳係數對熱負荷量之影響	80
圖6.5熱質傳係數對產物純度之影響	81
圖6.6熱質傳係數對熱負荷量之影響	81
 
表目錄
表3.1 精餾段數學模式	13
表3.2 氣提段數學模式	16
表3.3 液體密度參數	23
表3.4 液體黏度參數	24
表3.5氣體黏度參數	25
表3.6液體比熱參數	26
表3.7氣體比熱參數	26
表3.8 液體熱傳導係數參數	27
表3.9 氣體熱傳導係數參數	28
表3.10原子與官能基擴散體積增量	28
表3.11 中空纖維模組裝置參數	33
表4.1 微通道蒸餾塔裝置尺寸	38
表4.2 基本個案模擬結果	40
表4.3 基本個案冷凝器與再沸器模擬結果	41
表4.4 傳統塔Aspen Plus模擬設定	52
表4.5微蒸餾塔與傳統塔之設計結果	53
表4.6微蒸餾塔與傳統塔之質傳阻力比較	61
表4.7 微蒸餾塔與傳統塔之可用能損耗比較	63
表5.1 改變系統進料流量之影響	67
表5.2 改變氣化比之影響	68
表5.3 改變迴流比之影響	69
表5.4 改變通道長度之影響	70
表5.5 改變薄膜孔徑之影響	74
表5.6 改變薄膜孔隙度之影響	75
表5.7 改變薄膜厚度之影響	76
表6.1 氣體側熱傳係數之影響	82
表6.2 氣體側質傳係數之影響	83
表6.3 氣體側熱質傳係數之影響	84
表6.4 液體側熱傳係數之影響	86
表6.5 液體側質傳係數之影響	87
表6.6 液體側熱質傳係數之影響	88
表6.7 薄膜熱傳係數之影響	90
表6.8 薄膜質傳係數之影響	91
表6.9 薄膜熱質傳係數之影響	92
參考文獻
Becht, S., Franke, R., Geiselmann, A., Hahn, H., “Micro process technology as a means of process intensification,” Chemical Engineering Technology, 30, 295-299, 2007.
Chung, J.B., DeRocher, J.P., Cussler, E.L., “Distillation with nanoporous or coated hollow fibers,” Journal of Membrane Science, 257, 3–10, 2005.
Cussler, E. L., Diffusion, Cambridge University Press, Cambridge, 1997.
Cussler, E. L., Chung, J. B., DeRocher, J. P., “Distillation with nanoporous or coated hollow fibers,” Journal of Membrane Science, 257, 3-10, 2005.
De Koeijer, G. M., Kjelstrup, S., Salamon, P., Siragusa, G., Schaller, M., Hoffmann, K. H., “Comparison of entropy production rate minimization methods for binary diabatic distillation,” Industrial and Engineering Chemistry Research, 41, 5826–5834, 2002.
Ehrfeld, W., Hessel, V., Lowe, H., Microreactors: New technology for modern chemistry, Wiley-VCH, Weinheim, 2000.
Fonyo, Z., “Thermodynamic analysis of rectification I. reversible mode of rectification,” International Chemical Engineering, 14, 18–27,1974.
Gokhale, S.V., Tayal, R.K., Jayaraman, V.K., Kulkarni, B.D., “Microchannel reactors: applications and use in process development,” International Journal of Chemical Reactor Engineering, Review R2, 3, 2005.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part I,” Chemical Engineering and Technology, 26(1), 13-24, 2003a.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part II,” Chemical Engineering and Technology, 26(4), 391-408, 2003b.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part III,” Chemical Engineering and Technology, 26(5), 531-544, 2003c.
Hessel, V., Renken, A., Schouten, J.C., Yoshida, J., Micro Process Engineering: A Comprehensive Handbook, Wiley-VCH, Weinheim, 1-3, 2009.
Hirata, K., “Heat integration of distillation column,”Chemical engineering transactions, 18, 39–44, 2009.
Jensen, K.F., “Microreaction engineering—is small better?” Chemical Engineering Science, 56, 293-303, 2001.
Johannessen, E., Rsjorde, A., “Equipartition of entropy production as an approximation to the state of minimum entropy production in diabatic distillation,” Energy, 32, 467–473, 2007.
Kaiser, V. and Gourlia, J. P., “Applying Exergy to Distillation,” ChemicalEngineering, 19, 45–53, 1985.
Kandlikar, S. G., “Heat transfer and flow characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling,” Journal of Heat Transfer, 120, 395-401, 1999.
Kashid, M.N., Lioubov, K.M., “Microstructured reactors for multiphase reactions: state of the art,” Industrial and Engineering Chemistry Research, 48, 6465-6485, 2009.
Kays, W. M., “Numerical Solution for Laminar Flow Heat Transfer in Circular Tubes,” Trans. ASME, 77, 1265–1274, 1955.
Klemm, E., Doring, H., Geisselmann, A., Schirrmeister, S., “Microstructured Reactors in Heterogeneous Catalysis,” Chemical Engineering Technology, 30, 1615-1621, 2007.
Kiwi-Minsker, L., Renken, A., “Microstructured reactors for catalytic reactions,” Catalysis Today, 100, 2-14, 2005.
Kockmann, N., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., Tabata, O., Micro Process Engineering: Fundamentals, Devices, Fabrication and Applications, Wiley-VCH, 2006.
Kolb, G., Hessel, V., “Micro-structured reactors for gas phase reactions,” Chemical Engineering Journal, 98, 1-38, 2004.
Mah, R.S.H., Nicholas, J.J., Wodnik , R.B., “Distillation with secondary reflux and vaporization: a comparative evaluation,” AIChE Journal, 23, 651–658, 1977.
Mason, B. P., Price, K. E., Steinbacher, J. L., Bogdan, A. R., McQuade, D. T., “Greener approaches to synthesis using microreactor technology,” Chemical Reviews, 107, 2300-2318, 2007.
Mills, P.L., Quiram, D.J., Ryley, J.F., “Microreactor technology and process miniaturization for catalytic reactions – A perspective on recent developments and emerging technologies,” Chemical Engineering Science, 62, 6992-7010, 2007.
Nakaiwa, M., Huang, K., Naito, K., Endo, A., Owa, M., Akiyaz, T., Nakane, T., Takamatsu, T., “A new configuration of ideal heat integrated distillation columns (HIDiC),”Computers and Chemical Engineering Journal, 24, 239–245, 2000.
Olujić, Ž., Behrens, M., Sun, L., Fakhri,Graauw,J.d., “Augmenting distillation by using membrane based vapor-liquid contactors:An engineering view from Delft, ” Journal of Membrane Science, 350, 19-31, 2010.
Pan, M., Zeng, D., Tang, Y., Chen, D., “CFD-based study of velocity distribution among multiple parallel microchannels,” Journal of Computers, 4, 11, 1133-1138, 2009.
Petllyuk, F.B., Platonov, V.M., Slavinskii, D.M., “Thermodynamically optimal method for separating multi-component mixtures,” International Chemical Engineering, 5, 555–561, 1965.
Qi, A., Peppley, B. , Karan,K. ,“Integrated fuel processors for fuel cell application: A review,” Fuel Processing Technology, 88, 3-22, 2007.
Qin, Y.C., Li, B.A., Wang, S.C., “Experimental investigation of a novel polymeric heat exchanger using modified polypropylene hollow fibers,” Industrial and Engineering Chemistry Research, 51, 882–890, 2012.
Reid, R. C., Prausnitz, J. M., Poling, B. E.,The properties of gases and liquids, McGraw-Hill, New York, 1987.
Rivero, R., Garcia, M., Urquiza, J., “Simulation, exergy analysis and application of diabatic distillation to a tertiary amyl methyl ether production unit of a crude oil refinery,” Energy, 29, 467–489, 2004.
Sauar, E., Kjelstrup Ratkje, S. and Lien, K. M., “Process Optimization by equipartition of forces. Applications to distillation columns. In: Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Y. A. Gogus, A. Ozturk and G. Tsatsaronis, 2, 413–418, 1995.
Sauar, E., Rivero, R., Kjelstrup, S., Lien, K. M., “Diabatic column optimization compared to isoforce columns,” Energy Conversion and Management, 38, 1777–1783, 1997.
Schaller, M., Hoffmann, K.H., Rivero, R., Andresen, B., Salamon, P., “The influence of heat transfer irreversibilities on the optimal performance of diabatic distillation columns,” Journal of Non-Equilibrium Thermodynamics, 27, 257–269, 2002.
Schaller, M., Hoffmann, K. H., Siragusa, G., Salamon, P., Andresen, B., “Numerically optimized performance of diabatic distillation columns,” Computers and Chemical Engineering, 25, 1537–1548, 2001.
Koonaphapdeelert, S., Tan, X., Wu, Z., Li, K., “Solvent distillation by ceramic hollow fibre membrane contactors”, Journal of Membrane Science, 314, 58-66, 2008.
Song, L.M., Li, B.A., Zarkadas, D., Christian, S., Sirkar, K.K., “Polymeric hollow-fiber heat exchangers for thermal desalination processes,” Industrial and Engineering Chemistry Research, 49, 11961–11977, 2010.
Yang, D.L., Barbero, R.S., Devlin, D.J., Cussler, E.L., Colling, C.W., Carrera, M.E., “Hollow fibers as structured packing for olefin/paraffin separations,” Journal of Membrane Science, 279, 61–69, 2006.
Yang, D., Martinez, R., Fayyaz-Najafi, B., Wright, R., “Light hydrocarbon distillation using hollow fibers as structured packings,” Journal of Membrane Science, 362, 86–96, 2010.
Yang, M.C., Cussler, E.L., ‘‘Designing Hollow Fiber Contactors,’’ AIChE Journal, 32, 1910, 1986.
Zarkadas, D.M., Sirkar, K.K., “Polymeric hollow fiber heat exchangers: An alternative for lower temperature applications,” Industrial and Engineering Chemistry Research, 43, 8093–8106, 2004.
Zhang, G., Cussler, E.L., “Distillation in hollow fibers,” AIChE Joural, 49, 2344–2351, 2003.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信