淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1801200923055800
中文論文名稱 磁流變流膝上義肢之控制
英文論文名稱 Control of the Magnetorheological Fluid Damper in the Above Knee Prosthesis
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 97
學期 1
出版年 98
研究生中文姓名 陳秋伶
研究生英文姓名 Chiu-Ling Chen
學號 695431113
學位類別 碩士
語文別 英文
口試日期 2009-01-08
論文頁數 57頁
口試委員 指導教授-田豐
委員-沈志忠
委員-楊智旭
中文關鍵字 磁流變流阻尼器  Bouc-Wen 模型  膝上義肢  半主動控制 
英文關鍵字 Magnetorheological fluid damper  Bocu-Wen model  above knee prosthesis  semi-active control 
學科別分類 學科別應用科學航空太空
中文摘要 今對於單腳膝上截肢者,腿義肢之設計需求,為能夠模仿人類健康腿走路,以及,行走速度可自然隨著截肢者進行改變。故本文目的將使用特定方法為磁流變流之膝義肢,利用電壓的輸入進行控制,研究中將使用RecurDyn進行膝上義肢腿之動態模擬分析,並搭配Matlab/Simulink進行控制器設計,當中縮短開發時間並取得有效的控制器與參數分析。本文使用半主動控制器,可使膝上義肢腿行走時,有效的使其操作響應時間短、耗能低、流變效果顯著,且在行走中可改善膝上義肢系統之性能並達到省力之目的。
英文摘要 For the above knee amputee, the demand to design prosthetic leg, that can imitate walking to the sound legs and its walking speed can be changed naturally base on the amputee's walking speed. The purpose is to use the voltage to control magnetorheological fluid (MRF) damper of the Above-Knee (AK) prosthesis. In this thesis, RecurDyn is used to carry out the dynamic simulation analysis of the knee prosthesis and the controller is designed by MATLAB/Simulink. They reduce the period of time of developing a satisfactory controller and make the effective parameter analysis in this thesis.Using semi-active controller can get the fast response time, low energy dissipation, outstanding rheological effect,
and improve the performance of AK prosthesis system when AK prosthesis is walking.It can achieve the purpose that make the amputee walking easily.
論文目次 Contents
Acknowledgement i
Chinese Abstract ii
Abstract iii
Nomenclature iv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The Above Knee Prosthesis System Using Magnetorheological
Damper 4
2.1 The AK Prosthesis Model . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Simplified Model of Human Lower Limb by Fixed Ankle . . . . . . . . 4
2.1.2 The Artificial Knee Joint Type of the AK Prosthesis . . . . . . . . 7
2.2 MR Fluids and Dampers . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 MR Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 MR Dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Mechanical Model Formulation of MR Damper . . . . . . . . . . . . . 10
2.3 Human Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Terminology Used in Gait Analysis . . . . . . . . . . . . . . . . . 13
2.3.2 Hip Trajectory of Progression . . . . . . . . . . . . . . . . . . . 15
2.3.3 Thigh Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Knee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Dynamic Model of the Above Knee Prosthesis System Using
Magnetorheological Damper 18
3.1 The AK Prosthesis System in RecurDyn . . . . . . . . . . . . . . . . 18
3.2 MR Damper Subsystem in RecurDyn . . . . . . . . . . . . . . . . . . . 21
3.2.1 The Position of MR Damper in AK Prosthesis . . . . . . . . . . . . 22
4 Semi-active Control Algorithm for the MR Dampers . . . . . . . . . . . 25
4.1 Heaviside Function Method . . . . . . . . . . . . . . . . . . . . . . 26
4.2 The Modified Version of Heaviside Function Method . . . . . . . . . . 27
5 Numerical Examples 29
6 Conclusion 39
A Equations of System Model 40
Bibliography 47

List of Tables
2.1 Typical properties of MR fluids, [11, 13] . . . . . . . . . . . . . . 8
3.1 MR damper specification . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Data used for simulation in RecurDyn, [6] . . . . . . . . . . . . . . 30
5.2 Parameters for the MR damper (RD-1005-1) [29] . . . . . . . . . . . . 30
5.3 RMS analysis with four cases . . . . . . . . . . . . . . . . . . . . . 35
5.4 RMS analysis at three different walking speeds . . . . . . . . . . . . 38

List of Figures
2.1 A simplified model of human lower limb . . . . . . . . . . . . . . . . 5
2.2 Basic operating models of MR fluids, [14]. . . . . . . . . . . . . . . 9
2.3 Commercial linear MR fluid-based damper [14]. . . . . . . . . . . . . 10
2.4 Modified Bouc-Wen model . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The eight main phases of the walking cycle [17]. . . . . . . . . . . . 13
2.6 Terms used to describe foot placement on the ground [18]. . . . . . . 14
2.7 The pathway of the center of mass in locomotion [19]. . . . . . . . . 15
2.8 The vertical displacements of the center of mass. [20]. . . . . . . . 16
2.9 The thigh motion for normal gait in percent of gait cycle, [17]. . . . 17
2.10 Normal range of Knee mtiont during a gait cycle for free walking [17] 17
3.1 Icons used in this thesis . . . . . . . . . . . . . . . . . . . . . . 20
3.2 The AK prosthesis model with RecurDyn . . . . . . . . . . . . . . . . 20
3.3 The MR damper model with RecurDyn . . . . . . . . . . . . . . . . . . 21
3.4 The MR damper model with RecurDyn . . . . . . . . . . . . . . . . . . 22
3.5 Slider-crank configuration of MR damper in the AK Prosthesis . . . . . 23
4.1 Semi-active control systems for a plant integrated with a MR damper . 26
4.2 Graphical representation of algorithm for selecting control voltage
[24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Graphical representation of modified algorithm. . . . . . . . . . . . 28
5.1 Control diagram for AK Prosthesis system using MR damper. . . . . . . 29
5.2 Responses of knee angle with modified version Heaviside function
method (flexion negative). . . . . . . . . . . . . . . . . . . . . . . 31
5.3 The ground reaction force with modified version Heaviside function
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Input voltage v and damping force Frh with modified version Heaviside
function method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Responses of knee angle and the ground reaction force with Heaviside
function method (flexion negative). . . . . . . . . . . . . . . . . . 33
5.6 Responses of knee angle and the ground reaction force for v = 0V
(flexion negative). . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Responses of knee angle and the ground reaction force for v = 2.5V
(flexion negative). . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Responses of knee angle and the ground reaction force at cadence
= 96 steps/min (flexion negative). . . . . . . . . . . . . . . . . . . 36
5.9 Input voltage v and damping force Frh at cadence = 96 steps/min . . . 36
5.10 Responses of knee angle and the ground reaction force at cadence
= 119 steps/min (flexion negative). . . . . . . . . . . . . . . . . . 37
5.11 Input voltage v and damping force Frh at cadence = 119 steps/min. 37
A.1 The simplified model of human lower limb . . . . . . . . . . . . . . . 40
參考文獻 [1] D.-H. Cond and X.-H. Xu, “Swing phase control of intelligent lower limb
prosthesis using magnetorheological fluid damper,” Journal of System Simulation,
vol. 18, no. z2, pp. 916–918, 2006.
[2] J.-H. Kim and J.-H. Oh, “Development of an above knee prosthesis using mr
damper and leg simulator,” in IEEE International Conference on Robotics
and Automation, vol. 4, May 2001, pp. 3686–3691.
[3] A. Bar, G. Ishai, P. Meretsky, and Y. Koren, “Adaptive microcomputer control
of an artificial knee in level walking,” Journal of Biomedical Engineering,
vol. 5, no. 1, pp. 145–150, April 1983.
[4] D. R. Myers and G. D. Moskowitz, “Myoelectric pattern recognition for use
in the volitional control of above-knee prostheses,” in IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-11, no. 4, April 1981, pp. 296–302.
[5] B. Aeyels, W. van Petegem, J. V. Sloten, G. van der Perre, and L. Peeraer,
“An emg-based finite state approach for a microcomputer-controlled aboveknee
prosthesis,” in IEEE 17th Annual Conference Engineering in Medicine
and Biology Society, vol. 2, September 1995, pp. 1315–1316.
[6] D. B. Popovic and V. D. kalanovic, “Output space tracking control for aboveknee
prosthesis,” in IEEE Transaction on Biomedical Engineering, vol. 40,
no. 6, June 1993, pp. 549–557.
[7] M.-S. Ju, S.-H. Yi, Y.-G. Tsuei, and Y.-L. Chou, “Fuzzy control of electrohydraulic
above-knee prostheses,” Japan Society Mechanical Engineering
International Journal, vol. 38, no. 1, pp. 78–86, 1995.
[8] D. Popovic, M. N. Oguztoreli, and R. B. Stein, “Optimal control for anabove-knee prosthesis with two degrees of freedom,” Journal of Biomechanics,
vol. 28, no. 1, pp. 89–98, 1995.
[9] H. Herr and A. Wilkenfeld, “User-adaptive control of a magnetorheological
prosthetic knee,” Industrial Robot: An International Journal, vol. 30, no. 1,
pp. 42–55, 2003.
[10] C. Kim, J.-J. Lee, and X. Xu, “Design of biped robot with heterogeneous
legs for advanced prosthetic knee application,” in SICE-ICASE, 2006. International
Joint Conference, October 2006, pp. 1852–1855.
[11] T. Butz and O. von Stryk, “Modelling and simulation of electro- and magnetorheological
fluid dampers,” Zeitschrift f¨ur Angewandte Mathematik und
Mechanik, vol. 82, no. 1, pp. 3–20, January 2002.
[12] J. B. F. Spencer, S. Dyke, M. K. Sain, and J. Carlson, “Phenomenological
model for magnetorheological dampers,” Journal of Engineering Mechanics,
vol. 123, no. 3, pp. 230–238, March 1997.
[13] J. D. Carlson, D. M. Catanzarite, and K. A. S. Clair, “Commercial magnetorheological
fluid devices,” International Journal of Modern Physics B, vol. 10,
no. 23-24, pp. 2857–2865, 1996.
[14] G. Yang, “Large-scale magentorheological fluid ddamper for vibration mitigation:
Modeling, testing and control,” Civil and Environmental Engineering,
Notre Dame University, 2001.
[15] M. R. Jolly, J. W. Bender, and J. D. Carlson, “Properties and applications
of commercial magnetorheological fluids,” in Proc. SPIE 5th Annual Int.
Symposium on Smart Structures and Materials, San Diego, CA., 1998.
[16] F. Tyan, S. H. Tu, and W. S. Jeng, “Semi-active augmented h1 control of
vehicle suspension systems with mr dampers,” Journal of the Chinese Society
of Mechanical Engineers, vol. 29, no. 3, pp. 249–255, 2008.
[17] J. Perry, Gait Analysis: Normal and Pathological Function. SLACK Incorporated,
1992.
[18] M. W. Whittle, Gait Analysis: An Introduction, 4th ed. Butterworth Heinemann
Elsevier, 2007.
[19] J. B. dec. M. Saunders, V. T. Inman, and H. D. Eberhart, “The major
determinants in normal and pathological gait,” Journal of Bone and Join
Surgery, vol. 35A, no. 3, pp. 543–558, July 1953.
[20] D. A. Neumann, Kinesiology of the Musculoskeletal System: Foundations for
Physical Rehabilitation. Mosby Incorporated, 2002.
[21] “The FunctionBay, Inc. website,” http://www.functionbay.com/, 1999.
[22] R. Boulic, N. Magnenat-Thalmann, and D. Thalmann, “A global human
walking model with real-time kinematic personification,” The Visual Computer,
vol. 6, no. 6, pp. 344–358, 1990.
[23] F. Sup, A. Bohara, and M. Goldfarb, “Design and control of a powered
transfemoral prosthesis,” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 263–273, February 2008.
[24] S. J. Dyke, B. F. S. Jr., M. K. Sain, and J. D. Carlson, “Modeling and control
of magnetorheological dampers for seismic response reduction,” Smart
Materials and Structures, vol. 5, no. 5, pp. 565–575, 1996.
[25] N. D. Sims, R. Stanway, D. J. Peel, W. A. Bullough, and A. R. Johnson,
“Controllable viscous damping: An experimental study of an electrorheological
long-stroke damper under proportional feedback control,” Smart Materials
and Structures, vol. 8, no. 5, pp. 601–615, 1999.
[26] H. S. Lee and S. B. Choi, “Control and response characteristics of a magnetorheological
fluid damper for passenger vehicles,” Journal of Intelligent Material
Systems and Structures, vol. 11, no. 1, pp. 80–87, January 2000.
[27] D. H. Wang and W. H. Liao, “Modeling and control of magnetorheological
fluid dampers using neural networks,” Smart Materials and Structures,
vol. 14, no. 1, pp. 111–126, February 2005.
[28] ——, “Semiactive controllers for magnetorheological fluid dampers,” Journal
of Intelligent Material Systems and Structures, vol. 16, no. 11-12, pp. 183–
993, December 2005.
[29] W. H. Liao and C. Y. Lai, “Harmonic analysis of a magnetorheological
damper for vibration control,” Smart Materials and Structures, vol. 11, no. 2,
pp. 288–296, April 2002.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-01-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-01-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信