§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1801200921073800
DOI 10.6846/TKU.2009.00619
論文名稱(中文) 拍翼式微飛行器之動力學分析
論文名稱(英文) Dynamics of Flapping-Wing MAVs
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 1
出版年 98
研究生(中文) 楊澤明
研究生(英文) Tse-Ming Yang
學號 696430890
學位類別 碩士
語言別 英文
第二語言別
口試日期 2009-01-12
論文頁數 75頁
口試委員 指導教授 - 蕭富元
委員 - 楊龍杰
委員 - 洪健君
關鍵字(中) 拍撲翼
動力學
微飛行器
平均理論
飛行力學
關鍵字(英) flapping wing
dynamics
micro aerial vehicles
average theory
flight dynamics
第三語言關鍵字
學科別分類
中文摘要
本論文主要在分析拍翼式微型飛行器(MAVs)之動力學。淡江大學微機電實驗室已開發微飛行器多年。我們以該架飛行器為基礎,用以導出拍翼式微飛行器的動力學模型,並與實飛的飛行數據做比較。雖然目前已有很多文獻探討過類似的議題,但在此篇論文中,我們利用實際的飛行數據來印證我們所推導的動力學模型以及假設之正確性。此外,我們也透過數學推導,來證明空氣動力學領域中的“Advance Ratio”,可以直接應用於飛行動力學的推導。並且透過此轉換關係,可以將定翼機的分析方法,套用至拍翼機的分析。最後本文使用Matlab開發了圖形化介面的工具,歸納了我們的動力學模型,擬應用於未來拍翼式微型飛行器之飛行模擬。
英文摘要
The dynamics of flapping wing micro aerial vehicles (MAVs) is studied in this thesis. The MEMS Laboratory in Tamkang University has been developing flapping wing MAVs for
several years. Based on the developed flapping-wing MAVs we study its dynamics and compare our results with flight test data. Although several papers have discussed similar topics previously, using our flight test data we demonstrate the validity of the assumptions and derivations. We also propose a claim that links the average aerodynamical
forces to the wind tunnel test data, so that a flapping MAV can be analyzed with the same methodology as what we have done to a fixed-wing aircraft. Flight test data and
numerical simulations are also provided to demonstrate the validity of our derivation. Finally, we create a graphic user interface with Matlab as the 1st step to the flight animation of a flapping-MAV.
第三語言摘要
論文目次
Contents
Chinses Abstract i
Abstract ii
Acknowledgement iii
Nomenclature iv
1 Introduction 1
1.1 Overall Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Flapping MAVs in TKU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 Four-Bar-Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Actuating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Dynamics Model 10
2.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Dynamical Parameters 19
3.1 Gravitational Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Instantaneous Aerodynamics Force . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Averaging Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Other Physical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Simulation and Flight Test 49
4.1 Integration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Flight Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 The Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Conclusion and Future Work 64
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Bibliography 66
List of Tables
3.1 The parameters in force coefficients for a flapping wing. [1] . . . . . . . . . 25
3.2 The parameters in force coefficients for a tail wing. . . . . . . . . . . . . . 37
List of Figures
1.1 The flapping-wing MAV of TKU MEMS LAB [2]. . . . . . . . . . . . . . . 6
1.2 The structure of the actuator of MAV[2]. . . . . . . . . . . . . . . . . . . . 7
1.3 The concept illustration of four bar linkages. . . . . . . . . . . . . . . . . . 8
1.4 The interface of four-linkage design software. . . . . . . . . . . . . . . . . . 9
1.5 The variation of phase between right and left wings. . . . . . . . . . . . . . 9
2.1 A cartoon showing the definition of xbzb−plane in body-fixed coordinate [2]. 11
2.2 A cartoon showing the definition of ybzb−plane in body-fixed coordinate [2]. 12
2.3 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Relationship between body and inertial axes systems . . . . . . . . . . . . 14
3.1 The aerodynamic force distribution during downstroke. . . . . . . . . . . . 23
3.2 The aerodynamic force distribution during upstroke. . . . . . . . . . . . . . 23
3.3 A cartoon showing the definition of wing parameters. . . . . . . . . . . . . 26
3.4 The variation of lift force during a flapping period [1]. . . . . . . . . . . . . 29
3.5 The variation of thrust force during a flapping period [1]. . . . . . . . . . . 30
3.6 The flight trajectory captured by high speed camera shows that flapping
doesn’t affect the vertical movement of the flapping MAV too much[3]. . . 31
3.7 A cartoon showing the geometric parameters of the fuselage. . . . . . . . . 36
3.8 A simple illustrate for tunnel test. . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Relate the experimental data from tunnel test to the model of MAV. . . . 36
3.10 The lift performance of tail wing in wind tunnel test. . . . . . . . . . . . . 38
3.11 The drag performance of tail wing in wind tunnel test. . . . . . . . . . . . 38
3.12 The curve fitting of the lift of tail wing at −20o. . . . . . . . . . . . . . . . 39
3.13 The curve fitting of the lift of tail wing at −10o. . . . . . . . . . . . . . . . 39
3.14 The curve fitting of the lift of tail wing at 0o. . . . . . . . . . . . . . . . . 40
3.15 The curve fitting of the lift of tail wing at 10o. . . . . . . . . . . . . . . . . 40
3.16 The curve fitting of the lift of tail wing at 20o. . . . . . . . . . . . . . . . . 41
3.17 The curve fitting of the lift of tail wing at 30o. . . . . . . . . . . . . . . . . 41
3.18 The curve fitting of the lift of tail wing at 40o. . . . . . . . . . . . . . . . . 42
3.19 The curve fitting of the lift of tail wing at 50o. . . . . . . . . . . . . . . . . 42
3.20 The curve fitting of the drag of tail wing at −20o. . . . . . . . . . . . . . . 43
3.21 The curve fitting of the drag of tail wing at −10o. . . . . . . . . . . . . . . 43
3.22 The curve fitting of the drag of tail wing at 0o. . . . . . . . . . . . . . . . . 44
3.23 The curve fitting of the drag of tail wing at 10o. . . . . . . . . . . . . . . . 44
3.24 The curve fitting of the drag of tail wing at 20o. . . . . . . . . . . . . . . . 45
3.25 The curve fitting of the drag of tail wing at 30o. . . . . . . . . . . . . . . . 45
3.26 The curve fitting of the drag of tail wing at 40o. . . . . . . . . . . . . . . . 46
3.27 The curve fitting of the drag of tail wing at 50o. . . . . . . . . . . . . . . . 46
4.1 An example of the flight test trajectory. [1] . . . . . . . . . . . . . . . . . . 53
4.2 An example of the flight test trajectory. [1] . . . . . . . . . . . . . . . . . . 54
4.3 An example of the flight test trajectory. [1] . . . . . . . . . . . . . . . . . . 55
4.4 The flight trajectory in case 1. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 The flight trajectory in case 2. . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 The flight trajectory in case 3. . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 A graphical user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 The result of simulation shows in the interface. . . . . . . . . . . . . . . . . 62
4.9 A enlarged image shows in the interface. . . . . . . . . . . . . . . . . . . . 63
參考文獻
[1] C. K. Hsu. The Preliminary Design, Fabrication, and Testing of Flapping Micro Aerial Vehicles. PhD thesis, Tamkang University, 2008.
[2] Yang Lung-Jieh, Hsu Cheng-Kuei, Hsiao Fu-Yuen, and Shen Yung-Kang. A micro-aerial-vehicle(mav) with figure-of-eight flapping induced by flexible wing frames. In
47th AIAA Aerospace Sciences Meeting, 2009.
[3] L.J. Yang, M.W. Kao, C.K. Hsu, C.W. Liao, I-C. Huang, and P.T. Fang. A biomimetic figure-of-eight flapping of micro aerial vehicles(mavs) illuminated by leds. In Asia-Pacific Conference on Transducers and Micro/Nanotechnology (AP-COT 2008), Tainan, Taiwan, 2008.
[4] Jian Tang, Dragos Viieru, and Wei Shyy. Effects of reynolds number and flapping kinematics on hovering aerodynamics. In AIAA, Aerospace Sciences Meeting and
Exhibit, 2007.
[5] U. M. Norberg. Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution. Springer-Verlag, 1990.
[6] J. Yan, R.J. Wood, S. Avadhanula, M. Sitti, and R.S. Fearing. Towards flapping wing control for a micromechanical flying insect. In Proceeding of IEEE International Conference on Robotics and Automation, volume 4, pages 3901–3908, 2001.
[7] Michael H. Dickinson, Fritz-Olaf Lehmann, and Sanyay P. Sane. Wing rotation and the aerodynamic basis of insect flight. Science, 284:1954–1960, 1999.
[8] Dae-Kwan Kim and Jae-Hung Han. Smart flapping wing using macro-fiber composite actuators. In Proceeding of SPIES on Smart Structures and Materials, volume 6173, pages 133–141, 2006.
[9] Thomas Rakotomamonjy, Mustapha Ouladsine, and Thierry Le Moing. Modelization and kinematics optimization for a flapping-wing microair vehicle. Journal of Aircraft, 44(1):217–231, 2007.
[10] Z.A. Khan and S.K. Agrawal. Control of longitudinal flight dynamics of a flapping-wing micro air vehicle using time-averaged model and differential flatness based
controller. In Proceeding of American Control Conference, pages 5284–5289, July 2007.
[11] L. Schenato, W.C. Wu, and S.S. Sastry. Attitude control for a micromechanical flying insect via sensor output feedback. In Proceeding of IEEE Transaction on
Robotics and Automation, volume 2, pages 1031–1036, Feb. 2004.
[12] L. Schenato, X. Deng, and S. Sastry. Hovering flight for a micromechanical flying insect: Modeling and robust control synthesis. In Proceeding of 15th IFAC World
Congr. Automatic Control Barcelona, pages 235–240, 2002.
[13] L. Schenato, X. Deng, and S. Sastry. Flight control system for a micromechanical flying insect: architecture and implementation. In Proceeding of 2001 ICRA. IEEE
International Conference on Robotics and Automation, volume 2, pages 1641–1646, 2001.
[14] S. Avadhanula, R.J. Wood, E. Steltz, J. Yan, and R. S. Fearing. Lift force improvements for the micromechanical flying insect. In Proceeding of 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 2, pages 1350–1356, Oct. 2003.
[15] Xinyan Deng, L. Schenato, and S. Sastry. Model identification and attitude control scheme for a micromechanical flying insect. In Proceeding of 7th International Conference on Control, Automation, Robotics and Vision, volume 2, pages 1007–1012, Dec. 2002.
[16] Xinyan Deng, L. Schenato, Wei Chung Wu, and S.S. Sastry. Flapping flight for biomimetic robotic insects: part i-system modeling. In Proceeding of IEEE Trans-
actions on Robotics, volume 22, pages 776–788, Aug. 2006.
[17] L. Schenato, X. Deng, W.C. Wu, and S. Sastry. Virtual insect flight simulator (vifs): a software testbed for insect flight. In Proceeding of 2001 ICRA. IEEE International Conference on Robotics and Automation, volume 4, pages 3885–3892, 2001.
[18] Robert C. Nelson. Flight Stability and Automatic Control. WCB/McGraw-Hill, 1998.
[19] Mao Sun, Jikang Wang, and Yan Xiong. Dynamic flight stability of hovering insects. Acta Mechanica Sinica, 23(3):231–246, 2007.
[20] Warren F. Phillips. Mechanics of Flight. John Wiley & Sons, Inc., 2004.
[21] Pornsinsirirak Teerachai Nicholas. Parylene MEMS technology for adaptive flow control of flapping flight. PhD thesis, California Institute of Technology, 2002.
[22] Hassan K. Khalil. Nonlinear Systems. Prentice-Hall. Inc, 2000.
[23] L. Schenato, D. Campolo, and S. Sastry. Controllability issues in flapping flight for biomimetic micro aerial vehicles (mavs). In Proceeding of 42nd IEEE Conference on Decision and Control, volume 6, pages 6441–6447, Dec. 2003.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信