§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1801200814162400
DOI 10.6846/TKU.2008.00505
論文名稱(中文) 發展新型生物奈米感測技術於蛋白質之研究:C-反應蛋白之結構和構型分析與分子間交互作用
論文名稱(英文) Development of a Novel Biosensing Technique for Protein Research : C-Reactive Protein Characterization from Structure, Conformation to Molecular Interaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系博士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 1
出版年 97
研究生(中文) 林雲漢
研究生(英文) Yun-Han Lin
學號 892170068
學位類別 博士
語言別 英文
第二語言別
口試日期 2007-12-17
論文頁數 156頁
口試委員 指導教授 - 李世元(adamlee@mail.tku.edu.tw)
共同指導教授 - 林世明(sml@ntumc.org)
委員 - 王伯昌(bcw@mail.tku.edu.tw)
委員 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 林啟萬(cwlinx@ccms.ntu.edu.tw)
委員 - 黃榮山(lshuang@mems.iam.ntu.edu.tw)
關鍵字(中) 雙偏極化干涉術
原子力顯微術
導電性原子力顯微術
C反應蛋白
蛋白構形變化
抗體-抗原試驗
蛋白動力學
化學量論
關鍵字(英) DPI
AFM
cAFM
CRP
conformational change
Ab–Ag assay
kinetic
stoichimetry
第三語言關鍵字
學科別分類
中文摘要
為發展一C反應蛋白感測晶片作為心血管粥狀硬化症與冠狀動脈疾病的臨床檢測,本研究使用原子力顯微術與雙偏極化干涉術進行C反應蛋白表面微結構的量測,並定量五聚體蛋白三維結構與x光結晶學之結果比較。另外,利用此C反應蛋白感測晶片配合雙偏極化干涉術分析,經由表面厚度、單層密度與表面濃度等結構參數,分析C反應蛋白於不同pH值條件的構形變化,結果顯示在中性環境pH值6.0到7.0為五聚體的構形;酸性環境pH值4.0下,C反應蛋白分子薄膜解離為單體的CRP;在pH值2.0時則發現部份的單體的CRP會產生聚集作用;而在鹼性環境pH值8.0和10.0下,則只存在單體的C反應蛋白結構。此發現將有助於C反應蛋白生物性功能與構形的研究。另一方面,了解抗體-抗原間的交互作用可作為生物檢測的依據,本研究藉由多單體的C反應蛋白與單株C反應蛋白抗體間的系統,計算其中蛋白動力學與結合常數的化學量論,並驗證小分子化學(鈣離子) 與C反應蛋白分子薄膜的結合試驗。最後,開發一新型的電子轉移生物結合分子OT-3C,提供電化學生物晶片的應用,研究成果更發現此化學分子可將銦錫氧化物基材的導電性提高數倍之上,大大增加C反應蛋白感測晶片的發展性。
英文摘要
In order to develop the C-reactive protein (CRP) sensor chips for clinical detection of atherosclerosis and coronary heart disease, we used an atomic force microscope (AFM) and a dual polarization interferometric (DPI) biosensor to probe the surface ultrastructure and to measure the dimensions of CRP. The quantitative measurements of the dimensions of the protein were basically corresponds to that previously obtained from the structure of CRP determined by X-ray crystallography. Moreover, the DPI sensor was used to investigate the structure and conformational changes by structural parameters (thickness, layer density, surface mass loading concentration) under different physiological condition. This current work revealed that the conformations of CRP monolayer in the acidic region were existed two forms include of the monomeric CRP at pH 4.0 and a “partial” subunits’ aggregation at pH 2.0. On the other hands, only compact monomeric form was observed in the pH 8.0 and 10.0 alkaline region. These informations were useful to discover the biological role in the function of homopentamer CRP. For the purposed of biosensing, understanding the interaction kinetics between a ‘homopolyvalent’ antigen (Ag) and a monoclonal antibody (Ab). A model system, which uses a monoclonal Ab against a homopentameric Ag, CRP, was presented with principle and experiments for the study of the interactions between an Ab and an Ag that had multiple identical epitopes. This allowed evaluation of the dissociation constant (KD) and of the binding stoichiometry. In the final parts, the novel electron transfer type biolinker called 5"-formyl-5-carboxylic acid-2,2',5',2'-terthiophene, OT-3C, was designed into an EC sensor chip development. The aldehyde (-CHO) and carboxyl (-COOH) head groups could provide a higher potential for biomolecules immobilization and modification of hydroxyl ITO surfaces, which conductivity increased several folds.
第三語言摘要
論文目次
Table of Content

Abstract II
Acknowledgments IV
Abbreviations V
Table of Contents VI
Figures XIII
Tables XVII

Chapter I 1
General Introduction 1
1. Biosensor 2
2. C-reactive protein 3
3. Dual polarization interferometry 8
3.1 Optical sensors 8
3.2. Dual-slab waveguide interferometer 9
3.3 Operating principles 10
3.4. Resolving layer thickness and index 11
3.5. Instrumentation 11
4. Atomic Force Microscopy 13
4.1 Instrumentation 13
4.2 Principle of Operation 16
4.3 conductive Atomic Force Microscopy (cAFM) 18
Chapter II 20
Characterization of Protein Structure
Measurement of dimensions of pentagonal doughnut-shaped C-reactive
protein using an atomic force microscope and a dual polarization interferometric
biosensor 20
1. Introduction 22
2. Methods 23
2.1. AFM analysis 23
2.2. DPI analysis 23
3. Results and discussion 24
3.1. Each single CRP particle was readily distinguishable 24
3.2. CRP was a pentagonal doughnut-shaped CRP molecule 26
3.3. Measurement of the average monolayer thickness of CRP by DPI 29
4. Conclusions 31
Chapter III 32
Protein Conformational Changes
Measurement of the pH-induced conformational changes in the structure
of C-reactive protein by dual polarization interferometry 32
1. Introduction 34
2. Materials and Methods 35
2.1. Instrument - Dual Polarization Interferometry 35
2.2. Amination of DPI sensor chip 36
2.3. CRP Immobilization 38
2.4. pH-induced Conformational Change 38
3. Result and Discussion 39
3.1. Characterization of the CRP monolayer 39
3.2. Conformational properties of CRP in different pH solution 45
4. Conclusion 52
Chapter IV 55
Protein–Small Molecules Interaction
Characterization of calcium-binding structure in C-reactive protein 55
1. Introduction 56
2. Materials and Methods 56
2.1. Instrument - Dual Polarisation Interferometry 56
2.2. Surface chemistry of DPI sensor chip 56
2.3. CRP Immobilization 57
2.4. Calcium Interaction 59
3. Result and Discussion 59
3.1. Characterization of the CRP monolayer 59
3.2. Calcium-bound Structure of CRP 64
Chapter V 66
Protein–Protein Interaction Kinetic & Stoichiometry
Homopolyvalent antibody–antigen interaction kinetic studies with use of a
dual-polarization interferometric biosensor 66
1. Introduction 68
2. Materials and methods 70
2.1. Amination of DPI sensor chip 70
2.2. Surface CRP–anti-CRP interactions 71
2.3. Affinity measurements by an indirect ELISA 72
3. Theoretical considerations 72
4. Results and discussion 74
5. Conclusions 83
Chapter VI 85
Nanoelectronic Monolayer for Protein Immobilization
Surface modification of indium tin-oxide via a novel biolinker 5"-formyl-5-
carboxylic acid-2,2',5',2'-terthiophene induced nanoelectronic transfer
behavior 85
1. Introduction 86
2. Methods 87
2.1. DPI analysis 87
2.2. cAFM studies 88
3. Results and discussion 90
Chapter VII 94
Cell Investigation for Disease Determination
Surface ultrastructure and mechanical property of human chondrocyte
revealed by atomic force microscopy 94
1. Introduction 96
2. Materials and methods 98
2.1. Chemicals 98
2.2. Isolation of Human Chondrocytes and Cell Immobilization 98
2.3. Atomic Force Microscopy 99
2.4. Single-Cell AFM Measurement 99
2.5. Adhesion Force and Stiffness Measurements 101
3. Results 102
3.1. AFM Imaging of Chondrocytes 102
3.2. Force-Curve Analysis of Chondrocytes 106
3.3. Mechanical Properties of Chondrocytes 108
4. Discussion 110
5. Further Research 113
5.1 Isolation of Human Chondrocytes from Cartilages 113
5.2 Chondrocyte cells from Bone marrow 114
5.3 Micropellet Formation and Chondrogenic Induction 115
5.4 Identification of Chondrocytes within AFM 115
5.5. Mechanical measurements of Chondrocytes 117
Chapter VIII 120
General Conclusion 120
References 126
Chapter IX 140
Other Applications in AFM
Atomic force microscopy in biomolecular nanostructure measurements
and mechanical investigation 140
1. Introduction 141
2. pheochromocytoma (PC-12) cell 141
2.1 Objective 141
2.2 Methods and Instruments 141
2.3 AFM Imaging of PC-12 cells 142
2.4 Stiffness and Adhesion Force Measurements 143
3. Human sperm 145
3.1 Objective 145
3.2 Methods and Instruments 145
3.3 Cell Morphology Imaging 145
4. Organic Biolinker self-assembled monolayers (SAMs) 147
4.1 Objective 147
4.2 Methods and Instruments 147
4.3 Ultrastructure Investigation within AFM 148
4.4 Indium-tin oxide (ITO) Substrate 149
5. primary osteoblastic cells (POB) 151
5.1 Objective 151
5.2 Methods and Instruments 151
5.3 AFM Imaging of POB 151
5.4 Stiffness and Adhesion Force Measurements 152

Figures

Fig. I-1 The principle of function of a biosensor. 2
Fig. I-2 Structure of the CRP protomer. 4
Fig. I-3 Crystal structure of C-reactive protein complexed with phosphocholine (PC). 5
Fig. I-4 The structural dissociation of pentameric CRP to momnmeric subunits. 7
Fig. 1-5 Dual slab waveguide interferometer. 10
Fig. I-6 Schematic of the instrument and the physical embodiment. 12
Fig. I-7 Schematic representation of the atomic force microscope. 14
Fig. I-8 Tip-sample arrangements in the two modulation modes of AFM. 17
Fig. I-9 Illustration of conductive atomic force microscopy (cAFM). 19
Fig. II-1 Topographic images of the native CRP molecules scanned in air with AFM. 25
Fig. II-2 The nanostructure of CRP molecules scanned in vacuum with AFM. 28
Fig. II-3 Immobilization of CRP illustrated in the DPI biosensor. 30
FIg. III-1 The main components of AnaLight(R) Bio200 DPI biosensor. 36
Fig. III-2 The DPI sensor chip modification processes used for protein immobilization. 37
Fig. III-3 Immobilization of CRP on a glutaldehyde-functionalized sensor chip surface. 40
Fig. III-4 Addition of various concentrations of CRP onto a glutaldehyde-functionalized DPI sensor chip. 43
Fig. III-5 CRP conformational changes in different pH solution. 47
Fig. III-6 Structure parameters of CRP monolayer obtained from the DPI biosensor under different pH solution. 49
Fig. III-7 CRP monolayer retained a stable pentameric conformation. 51
Fig. IV-1 Raw phase data for the Ca2+ interactions of CRP molecules to a dual
waveguide sensor chip surface. 58
Fig. IV-2 Immobilization of CRP on a glutaldehyde-functionalized sensor chip surface. 61
Fig. IV-3 Addition of various concentrations of CRP onto a glutaldehyde-functionalized DPI sensor chip. 63
Fig. IV-4 The conformational changes obtained from the interaction between Ca2+ and CRP. 65
Fig. V-1 Scheme of the binding of homopolyvalent CRP Ag(s) to divalent monoclonal anti-CRP Ab(s). 70
Fig. V-2 Raw phase data for the immobilization of anti-CRP and the binding of CRP to a dual-waveguide sensor surface. 74
Fig. V-3 Immobilization of anti-CRP on a glutaldehyde-functionalized sensor chip surface. 76
Fig. V-4 Addition of various concentrations of monoclonal anti-CRP IgG onto a glutaldehyde-functionalized DPI sensor chip. 78
Fig. V-5 Binding curves of CRP to anti-CRP Ab at the silica/water interface by DPI. 81
Fig. V-6 Scatchard plot of CRP binding to monoclonal anti-CRP Ab measured by an indirect competition ELISA. 83
Fig. VI-1 The molecular structure of novel 5"-formyl-5-carboxylic acid-2,2',5',2'- terthiophene biolinker, OT-3C. 87
Fig. VI-2 Raw phase data (TM/TE) for modification of hydroxyl ITO surfaces and biomolecules immobilization were obtained from a DPI sensor chip. 88
Fig. VI-3 Illustration of the cAFM with OT-3C modified electrode. 90
Fig. VI-4 AFM/cAFM measurements in ITO and OT-3C modified ITO electrode, respectively. 91
Fig. VI-5 Characterization of the nanoelectronic properties of the bared ITO, 3-APTES activated, and OT-3C modified ITO electrode. 92
Fig. VII-1 Schematic showed a typical cycle for force measurement. 102
Fig. VII-2 Observations with AFM; a chondrocyte was isolated from OA cartilage. 104
Fig. VII-3 Topographic AFM images of single old and young chondrocytes. 105
Fig. VII-4 Force-distance curves acquired with three systems. 107
Fig. VII-5 Histograms and Gaussian distribution curves showed the differences in the adhesion forces of old and young chondrocyte cells. 109
Fig. VII-6. Histograms and Gaussian distribution curves showed stiffness measurements of old and young chondrocyte. 110
Fig. VII-7 Chondrocytes image obtained from AFM. 116
Fig. VII-8 Histograms and Gaussian distribution curves showed stiffness measurements of chondrocytes. 117
Fig. VII-9. Histograms and Gaussian distribution curves showed adhesion force measurements of chondrocytes. 119
Fig. IX-1 PC-12 cell image obtained from AFM. 142
Fig. IX-2 Histograms and Gaussian distribution curves showed stiffness measurements of dendrite and nucleus PC-12 cells. 143
Fig. IX-3 Histograms and Gaussian distribution curves showed adhesion force measurements of dendrite and nucleus PC-12 cell. 144
Fig. IX-4 Human sperm images obtained from AFM. 146
Fig. IX-5 Illustration of the alkanethiol biolinker modification on the gold surfaces. 148
Fig. IX-6 The formation of the alkanethiol biolinkers SAMs were scanned in air with AFM. 148
Fig. IX-7 The height images, 3D topographic images and thickness of alkanethiol biolinker SAMs. 149
Fig. IX-8 POB cell image obtained from AFM. 152
Fig. IX-9 Histograms and Gaussian distribution curves showed stiffness measurements of native POB and US stimulated POB. 153
Fig. IX-10 Histograms and Gaussian distribution curves showed adhesion force measurements of native POB and US stimulated POB. 154
Fig. IX-11 Comparison of the stiffness between center, side, and corner parts in the native POB and US stimulated POB cells. 155
Fig. IX-12 Comparison of the adhesion force between center, side, and corner parts in the native POB and US stimulated POB cells. 156

Tables

Table II-1 The physical measurements of CRP ultrastructure. 31
Table III-1 The structural parameters in thickness and density of CRP monolayer at the solid /liquid interface were characterized under different pH environment. 48
Table. VI-1 The conductance measurement of the bared ITO, 3-APTES activated, and OT-3C modified ITO electrode in the cAFM. 93
Table VII-1 Statistical analysis of cellular surface topographies of old and young chondrocytes. 105
Table VII-2 Comparison of adhesion forces and stiffness measurements of old and young chondrocytes 108
Table. IX-1 The topography, 3D images, and the surface parameters of ITO substrate. 150
參考文獻
Agrawal, A., Shrive, A.K., Greenhough, T.J., Volanakis, J.E., 2001. Topology and structure of the C1q-binding site on C-reactive protein. J. Immunol. 166, 3998-4004.
Ahluwalia, A., Rossi, D.D., Schirone, A., 1992. Antigen recognition properties of antibody monolayers.Thin Solid Films 210 (2), 726-729. 
Armstrong, J., Salacinski, H.J., Mu, Q., Seifalian, A.M., Peel, L., Freeman, N., Holt, C.M., Lu, J.R., 2004. Interfacial adsorption of fibrinogen and its inhibition by RGD peptide: a combined physical study. J. Phys.: Condens. Matter 16, S2483-S2491.
Arwin, H., 2000. Ellipsometry on thin organic layers of biological interest: characterization and applications. Thin Solid Films 377/378, 48-56. 
Bakker, E., Qin, Y., 2006. Electrochemical Sensors. Anal. Chem. 78, 3965-3983. 
Black, S., Kushner, I., Samols, D., 2004. C-reactive Protein. JBC 279 (47), 48487-48490.
Benzaquen, L.R., Yu, H., Rifai, N., 2002. High Sensitivity C-reactive Protein: An emerging role in cardiovascular risk assessment. Crit. Rev. Clin. Lab. Sci. 39, 459-497.
Berzofsky, J.A., Berkower, I.J., 1983. In: Paul, W.E. (Ed.), Antibody-antigen interaction. CRC Press, Boca Raton, pp. 595-644. 
Bhakdi, S., Torzewski, M., Paprotka, K., Schmitt, S., Barsoom, H., Suriyaphol, P., Han, S.R., Lackner, K. J., and Husmann, M., 2004. Possible protective role for C-Reactive Protein in atherogenesis. Circulation 109 (15), 1870-1876.
Biehle, S.J., Carrozzella, J., Shukla, R., Popplewell, J., Swann, M., Freeman, N., Clark, J.F., 2004. Apolipoprotein E isoprotein-specific interactions with tissue plasminogen activator. Biochim. Biophys. Acta 1689 (3), 244-251.
Binning, G., Quate, C.F., 1986. Atomic Force Microscope. Phys. Rev. Lett. 56, 930-933.
Bliznyukov, O.P., Kozmin, L.D., Falikova, V.V., Martynov, A.I., Tishchenko, V.M., 2003. Aggregation of C-reactive protein in solutions at acidic pH. Biofizika 48 (5), 844-852.
Blake, G.J., Rifai, N., Buring, J.E., Ridker, P.M., 2003. Blood Pressure, C-Reactive Protein, and risk of future cardiovascular events. Circulation 108 (24), 2993-2999.
Bolton, M.C., Dudhia, J., Bayliss, M.T., 1999. Age-related changes in the synthesis of link protein and aggrecan in human articular cartilage: implications for aggregate stability. Biochem J 337, 77-82.
Buckwalter, J.A., 2002. Articular cartilage injuries. Clin Orthop Relat Res 402, 21-37.
Buckwalter, J.A., Mankin, H.J., 1998. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47, 477-486.
Buckwalter, J.A., Mankin, H.J., 1998. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47,487-504.
Buckwalter, J.A., Mankin, H.J., Grodzinsky, A.J., 2005. Articular cartilage and osteoarthritis. Instr Course Lect 54, 465-480.
Buckwalter, J.A., Martin, J., Mankin, H.J., 2000. Synovial joint degeneration and the syndrome of osteoarthritis. Instr Course Lect 49, 481-489.
Bunde, R.L., Jarvi, E.J., Rosentreter, J.J., 1998, Piezoelectric quartz crystal biosensors. Talanta 46 (6), 1223-1236. 
Burstein, E., Chen, W.P., Chen, Y.J., Hartstein, A., 1974. Surface polarization-propagating electromagnetic modes at interfaces. J. Vac. Sci. Technol. 11, 1004-1019.
Cabrera-Abreu, J.C., Davies, P., Matek, Z., Murphy, M.S., 2004. Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic. Arch. Dis. Child 89, 69-71.
Christodoulides, N., Mohanty, S., Miller, C.S., Langub, M.C., Floriano, P.N., Dharshan, P., Ali, M.F., Bernard, B., Romanovicz, D., Anslyn, E., Fox, P.C., McDevitt, J.T., 2005. Application of microchip assay system for the measurement of C-reactive protein in human saliva. Lab Chip 5, 261-269.
Clarke, J.L., Anderson, J.L., Carlquist, J.F., Roberts, R.F., Horne, B.D., Bair, T.L., Kolek, M.J., Mower, C.P., Crane, A.M., Roberts, W.L., Muhlestein, J.B., 2005. Application of microchip assay system for the measurement of C-reactive protein in human saliva. Am. J. Cardiol. 1 (95), 155-158.
Cross, G.H., Reeves, A.A., Brand, S., Popplewell, J.F., Peel, L.L., Swann, M.J., Freeman, N.J., 2003. A new quantitative optical biosensor for protein characterisation. Biosens. Biosensors and Bioelectronics 19 (4), 383-390.
Cross, G.H., Reeves, A., Brand, S., Swann, M.J., Peel, L.L., Freeman, N.J., Lu, J.R., 2004. The metrics of surface adsorbed small molecules on the Young's fringe dual-slab waveguide interferometer. J. Phys. D: Appl. Phys. 37, 74-80.
Cross, G.H., Ren, Y., Swann, M.J., 2000. Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films. Analyst 125 (12), 2173-2175. 
Cross, G.H., Ren, Y., Freeman, N.J., 1999. Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing. J. Appl. Phys. 86, 6483-6499.
Cush, R., Cronin, J.M,, Stewart, W.J., Maule, C.H., Molloy, J., Goddard, N.J., 1993. The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions: Part I. Principle of operation and associated instrumentation. Biosensors and Bioelectronics. 8, 347-353.
Cui, X.D., Primak, A., Zarate, X., Tomfohr, J., Sankey, O.F., Moore, A.L., Moore, T.A., Gust, D., Harris,  G., Lindsay, S.M., 2001. Reproducible measurement of single-molecule conductivity. Science 294, 571-574.
Czajkowsky, D.M., Hotze, E.M., Shao, Z., Tweten, R.K., 2004. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J. 23, 3206-3215.
Darling, E.M., Zauscher, S., Guilak, F., 2006. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 14 (6), 571-579.
Davis, F., Higson, S.P.J., 2005. Structured thin films as functional components within biosensors. Biosensors and Bioelectronics 21 (1), 1-20.
DeGroot, J., Verzijl, N., Bank, R.A., Lafeber, F.P., Bijlsma, J.W., TeKoppele, J.M., 1999. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum 42, 1003-1009.
Deodhar, S.D., James, K., Chiang, T., Edinger, M., Barna, B.P., 1982. Inhibition of lung metastases in mice bearing a malignant fibrosarcoma by treatment with liposomes containing human C-reactive Protein. Cancer Res. 42 (12), 5084-5088.
Dozin, B., Malpeli, M., Camardella, L., Cancedda, R., Pietrangelo, A., 2002. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol 21, 449-459.
Dudhia, J., 2005. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 62, 2241-2256.
Eisen, H.N., Karush, F., 1949. The Interaction of Purified Antibody with Homologous Hapten. Antibody Valence and Binding Constant. J. Am. Chem. Soc. 71 (1), 363-369.
Hynes, R.O., 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25. Erlinger, T.P., Platz, E.A., Rifai, N., Helzlsouer, K.J., 2004. C-Reactive Protein and the Risk of Incident Colorectal Cancer. JAMA 291 (5), 585-590.
Eyre, D.R., Wu, J.J., Fernandes, R.J., Pietka, T.A., Weis, M.A., 2002. Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem Soc Trans 30, 893-899.
Flanagan, M.T., Pantell, R.H., 1984. Surface plasmon resonance and immunosensors. Electr. Lett. 20, 968-970.
Forriol, F., Shapiro, F., 2005. Bone development: interaction of molecular components and biophysical forces. Clin Orthop Relat Res 432, 14-33.
Friguet, B., Chaffotte, A.F., Djavadi-Ohaniance, L., Goldberg, M.E., 1985. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Chromatogr. 77, 305-319.
Ganguli, M., Babu, J.V., Maiti, S., 2004. Complex formation between cationically modified gold nanoparticles and DNA: an atomic force microscopic study. Langmuir 20, 5165-5170.
Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S., Alnot, P., 1993. Molecular engineering of organic semiconductors: Design of self-assembly properties in conjugated thiophene oligomers. J. Am. Chem. Soc. 115, 8716-8721.
Gestwicki, J.E., Hsieh, H.V., Pitner, J.B., 2001. Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal. Chem. 73, 5732-5737.
Glaser, R.W., 1993. Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics. Anal. Biochem. 213 (1), 152-161.
Hanson, E.L., Guo, J., Koch, N., Schwartz, J., Bernasek , S.L., 2005. Advanced surface modification of indium tin oxide for improved charge injection in organic devices. J. Am. Chem. Soc. 127, 10058-10062.
Jager, E.W.H., Ingan?s, O., Lundstr?m, I., 2000. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science 288, 2335-2338.
Jialal, I., Devaraj, S., Venugopal, S.K., 2004. C-reactive protein: risk marker or mediator in atherothrombosis ?. Hypertension 44, 6-11.
Kempson, G.E., 1991. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta 1075, 223-230.
Kim, H.T., Lo, M.Y., Pillarisetty, R., 2002. Chondrocyte apoptosis following intraarticular fracture in humans. Osteoarthritis Cartilage 10, 747-749.
Khreiss, T., Jozsef, L., Potempa, L.A., 2004. Conformational rearrangement in C-reactive protein is required for proonflammatory actions on human endothelial cells. Circulation 109, 2016-2022.
Koepp, H., Eger, W., Muehleman, C., Valdellon, A., Buckwalter, J.A., Kuettner, K.E., 1999. Prevalence of articular cartilage degeneration in the ankle and knee joints of human organ donors. J Orthop Sci 4, 407-412.
Kondo, A., Hideki Fukuda, H., 1998. Effects of adsorption conditions on kinetics of protein adsorption and conformational changes at ultrafine silicapParticles. J. Colloid Interface Sci. 198 (1), 34-41.
Kopp-Marsaudon, S., Lecl`ere, Ph., Dubourg, F., Lazzaroni, R., Aim?e, J.P., 2000. Quantitative measurement of the mechanical contribution to tapping-mode atomic force microscopy images of soft materials. Langmuir 16, 8432-8437.
Kurtis, M.S., Schmidt, T.A., Bugbee, W.D., Loeser, R.F., Sah, R.L., 2003. Integrinmediated adhesion of human articular chondrocytes to cartilage. Arthritis Rheum 48,110-118.
Kuznetsov, Y.G., Daijogo, S., Zhou, J., Semler, B.L., McPherson, A., 2005. Atomic Force Microscopy analysis of Icosahedral virus RNA. J. Mol. Biol. 347, 41-52.
Lammers, F., Scheper, T, 1999, Thermal Biosensors in Biotechnolog. Advances in Biochemical Engineering/Biotechnology 64, 35-67.
Laurent, P., Potempa, L.A., Gewur z., H., Fiedel, B.A., Alen, R.C., 1983. The titration curve of native C reactive protein. Electrophoresis 4,316-317.
LeFor, W.M., Bauer, D.C., 1970. Relative Concentrations of IgM and IgG antibodies during the primary response.J. Immunol. 104 (5), 1276-1282.
Lesniewska, E., Milhiet, P.E., Giocondi, M.C., Le Grimellec, C., 2002. Atomic force microscope imaging of cells and membranes. Methods Cell Biol 68, 51-65.
Lin, S., Hsiao, I.Y., Hsu, S.M., 1997. Determination of the dissociation constant of phosvitin–anti-phosphoserine Interaction by affinity capillary electrophoresis. Anal. Biochem. 254, 9-17.
Lin, S., Hsu, S.M., 1999. Using affinity capillary electrophoresis to evaluate average binding constant of 18-mer diphosphotyrosine peptide to anti-phosphotyrosine Fab. Electrophoresis 20, 3388-3395.
Lin, S., Tsai, J.C., Hsu, S.M., 2000. Characterization of a polyclonal antihapten antibody by affinity capillary electrophoresis. Anal. Biochem. 284, 422-426.
Lin, S., Hsu, S.M., 2005. Recent advances in capillary electrophoretic immunoassays. Anal. Biochem. 341, 1-15.
Lin, L.P., Huang, L.S., Lee, C.K., Lin, S., 2005. Determination of binding constant of DNA-binding drug to target DNA by surface plasmon resonance biosensor technology. Curr. Drug Targets 5, 61-72.
Lin, S., Lee, C.K., Wang, Y.M., Huang, L.S., Lin, Y.H, Lee, S.Y., She, B.C., Hsu, S.M., 2006. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosensors and Bioelectronics 22 (2), 323-327.
Liedberg, B., Nylander, C., Lundstrom, L., 1983. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299-304.
Loening, A.M., James, I.E., Levenston, M.E., Badger, A.M., Frank, E.H., Kurz, B., 2000. Injurious mechanical compression of bovine articular cartilage induces chondrocyte apoptosis. Arch Biochem Biophys 381, 205-212.
Loeser, R.F., 2002. Integrins and cell signaling in chondrocytes. Biorheology 39,119-124.
Lohmander, L.S., Lark, M.W., Sandy, J.D., 1996. Mechanisms of degradation of argecanes in osteoarthritic cartilage. Rev Prat 46, S11-14.
Lohmander. L.S., Neame, P.J., Sandy, J.D., 1993. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum 36, 1214-1222.
Lu, J.R., Swann, M.J., Peel, L.L., Freeman, N.J., 2004. Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry. Langmuir 20 (5), 1827-1832.
Lu, W.,  Fadeev, A.G., Qi, B., Smela, E., Mattes, B.R., Ding, J., Spinks, G.M., Mazurkiewicz, J., Zhou, D., Wallace, G.G., MacFarlane, D.R., Forsyth, S.A., Forsyth, M., 2002. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297, 983-987.
Luff, B.J., Wilkinson, J.S., Piehler, J., Hollenbach, U., Ingenhoff, J., Fabricius, N., 1998.  Integrated optical Mach-Zehnder biosensor J. Lightwave Technol. 16, 583-592.
Marnell, L.L., Mold, C., Volzer, M.A., Burlingame, R.W., Du Clos, T.W., 1995. C-reactive protein binds to Fc RI in transfected COS cells. J. Immunol. 155, 2185-2193.
Marquart, M., Deisenhofer, J., 1982. The three dimensional structure of antibodies. Immunol. Today 3 (6), 160-166.
Martin, J.A., Buckwalter, J.A., 2002. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3, 257-264.
Matzke, R., Jacobson, K., Radmacher, M., 2001. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3, 607-610.
Mayne, R., 1989. Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum 32, 241-246.
Mazer, S.P., Rabbani, L.R.E., 2004. Evidence for C-reactive protein's role in (CRP) vascular disease: Atherothrombosis, immuno-regulation and CRP. J Thromb Thrombolysis 17 (2), 95-105.
Mello, L.D., Kubota, L.T., 2002, Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry 77 (2), 237-256.
Messai, H., Duchossoy, Y., Khatib, A.M., Panasyuk, A., Mitrovic, D.R., 2000. Articular chondrocytes from aging rats respond poorly to insulin-like growth factor-1: an altered signaling pathway. Mech Ageing Dev 115, 21-37.
Motie, M., Brockmeier, S., Potempa, L.A., 1996. Binding of model soluble immune complexes to modified C-reactive protein. J. Immunol. 156 (11), 4435-4441.
Mulligan, J.J., Osler, A.C., Rodriguez, E., 1966. Weight estimates of rabbit anti-human serum albumin based on antigen-binding capacity. J. Immunol. 96, 324-329.
Nakamura, H., Karube, I., 2003, Current research activity in biosensors. Anal. Bioanal Chem. 337 (3), 446-468.
Nellen, Ph.M., Tiefenthaler, K., Lukosz, W., 1988. Integrated optical input grating couplers as biochemical sensors. Sens. Actuators 15, 285-295.
Nuzzo, R.G., Allara, D.L., 1983. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481-4483.
Parker, C.W., Yoo, T.J., Johnson, M.C., Godt, S.M., 1967. Fluorescent Probes for the Study of the Antibody-Hapten Reaction. I. Binding of the 5-dimethylaminonaphthalene- 1-sulfonamide group by homologous rabbit antibody. Biochemistry 6 (11), 3408 -3412.
Pfeuty, A., Gueride, M., 2000. Peroxide accumulation without major mitochondrial alteration in replicative senescence. FEBS Lett 468 (1), 43-47.
Poole, A.R., Kojima, T., Yasuda, T., Mwale, F., Kobayash,i M., Laverty, S., 2001. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 391, S26-33.
Potempa, L.A., Maldonado, B.A., Laurent, P., Zemel, E.S., Gewurz., H., 1983. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol. Immunol. 20, 1165-1175.
Radmacher, M., 2002. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68, 67-90.
Rosen, F., McCabe, G., Quach, J., Solan, J., Terkeltaub, R., Seegmiller, J.E., 1997. Differential effects of aging on human chondrocyte responses to transforming growth factor beta: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum 40, 1275-1281.
Roux, K.H., Kilpatrick, J.M., Volanakis, J.E., Kearney, J.F., 1983. Localization of the phosphocholine-binding sites on C-reactive protein by immunoelectron microscopy. J. Immunol. 131, 2411-2415.
Sandy, J.D., Flannery, C.R., Neame, P.J., Lohmander, L.S., 1992. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 89,1512-1516.
Sarkisov, S.S., Diggs, D.E., Adamovsky, G., Curley, M.J., 2001. Single-arm double-mode double-order planar waveguide interferometric sensor. Appl. Opt. 40 (3), 349 -359.
Scherlis, D.A., Marzari, N., 2005. π-Stacking in thiophene oligomers as the driving force for electroactive materials and devices. J. Am. Chem. Soc. 127, 3207-3212.
Schmal, H., Mehlhorn, A.T., Fehrenbach, M., Muller, C.A., Finkenzeller, G., Sudkamp, N.P., 2006. Regulative mechanisms of chondrocyte adhesion. Tissue Eng 12, 741-750.
Schneider, S.W., Matzke, R., Radmacher, M., Oberleithner, H., 2004. Shape and volume of living aldosterone-sensitive cells imaged with the atomic force microscope. Methods Mol Biol 242, 255-279.
Scott, C.C., Luttge, A., Athanasiou, K.A., 2005. Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry. J Biomed Mater Res A 72, 83-90.
Seddon, J.M., Gensler, G., Milton, R.C., Klein, M.L., Rifai, N., 2004. Association between C-reactive protein and age-related macular degeneration. JAMA 6 (291), 704-710.
Shahin, V., Albermann, L., Schillers, H., Kastrup, L., Schafer, C., Ludwig, Y., Stock, C., Oberleithner, H., 2005. . Steroids dilate nuclear pores imaged with atomic force microscopy. J. Cell. Physiol. 202, 591-601.
Shrive, A.K., Cheetham, G.M.T., Holden, D., Myles, D.A.A., Turnell, W.G., Volanakis, J.E., Pepys, M.B., Bloomer, A.C., Greenhough, T.J., 1996. Three dimensional structure of human C-reactive protein. Nat. Struct. Biol. 3 (21), 346-354.
Singer, S.J., Campbell, D.H., 1954. The influence of pH on antigen-antibody equilibria. J. Am. Chem. Soc. 76 (15), 4052-4053.
Sitko, J.C., Mateescu, E.M., Hansma, H.G., 2003. Sequence-dependent DNA condensation and the Electrostatic zipper. Biophys. J. 84, 419-431.
Solchaga, L.A., Goldberg, V.M., Caplan, A.I., 2001. Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res 391, S161-170.
Stolz, M., Raiteri, R., Daniels, A.U., Van Landingham, M.R., Baschong, W., Aebi, U., 2004 Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86, 3269-3283.
Swann, M.J., Peel, L.L., Carrington, S., Freeman, N.J., 2004. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal. Biochem. 329 (2), 190-198.
Szalai, A.J., Agrawal, A., Greenhough, T.J., Volanakis, J.E., 1999. C-reactive protein: Structural biology and host defense function. Clin Chem Lab Med 37 (3), 265–270.
Szalai, A.J., Weaver, C.T., McCrory, M.A., van Ginkel, F. W., Reiman, R.M., Kearney, J.F., Marion, T.N., Volanakis, J.E., 2003.  Delayed lupus onset in (NZBxNZW)F1 mice expressing a human C-reactive protein transgene. Arthrit. Rheumat. 48 (5), 1602-1611.
Thompson, D., Pypes, M.B., Wood., S.P., 1999. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7 (2), 169-177.
Tracy, R.P., 2003. Emerging relationships of inflammation, cardiovascular disease and chronic diseases of aging. Int. J. Obes. 27, S29-S34.
Tseng, W.L., Chang, H.T., Hsu, S.M., Chen, R.J., Lin, S., 2002. Immunoaffinity capillary electrophoresis : Determination of binding constant and stoichiometry for antibody-antigen interaction. Electrophoresis 23, 836-846.
Tyyni, A., Karlsson, J., 2000. Biological treatment of joint cartilage damage. Scand J Med Sci Sports 10, 249-265.
van der Kraan, P.M., Buma, P., van Kuppevelt, T., van den Berg, W.B., 2002. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10, 631-637.
Verma, S., Szmitko, P.E., Yeh, E.T.H., 2004. C-reactive protein: Structure affects functions. Circulation 109, 1914-1917.
Vermeire, S., Van Assche, G., Rutgeerts, P., 2004. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 10, 661-665.
Verzijl, N., DeGroot, J., Ben, Z.C., Brau-Benjamin, O., Maroudas, A., Bank, R.A., 2002. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46, 114-123.
Volanakis, J.E., 2001. Human C-reactive protein: expression, structure, and function. Mol. Immunol. 38, 189-197.
Wilson, R.G., Trogadis, J.E., Zimmerman, S., Zimmerman, A.M., 2001. Hydrostatic pressure induced changes in the cytoarchitecture of pheochromocytoma (PC-12) cells.  Cell Biology International 25 (7), 649-665.
Wang, H.W., Sui, S.F., 2001. Two-dimensionally assembly of pentameric rabbit C-reactive protein on lipid monolayers. J. Struct. Biol. 134 (1), 46-55.
Weetall, H.H., Filbert, A.M., 1974. Porous glass for affinity chromatography applications. Or affinity techniques, enzyme purification. Methods Enzymol. 34, 59-72.
Weetall, H.H., 1976. Covalent coupling methods for inorganic support materials. Methods Enzymol. 44, 134-148.
Wen, J., Arakawa,T., 2000. Refractive index of proteins in aqueous sodium chloride. Anal. Biochem. 280, 327-329. 
Wink, T., van Zuilen, S.J., Bult, A., van Bennekom, W.P., 1997. Self-assembled monolayers for biosensors. Analyst 122, 43R-50R. 
Worth, C., Goldberg, B.B., Ruane, M., Unlu, M.S., 2001. Surface desensitization of polarimetric waveguide interferometers. IEEE J. Sel. Top. Quant. Electron. 7 (6), 874-877.
Wu, Y., Cai, J., Cheng, L., Xu, Y., Lin, Z., Wang, C., 2006. Atomic force microscope tracking observation of Chinese hamster ovary cell mitosis. Micron 37,139-145. 
Wu, Y., Ji, S.R., Wang, H.W., Sui, S.F., 2002. Study of the spontaneous dissociation of Rabbit C Reactive Protein. Biochemistry (Moscow) 67 (12), 1377-1382.
Yasuda, S., Yoshida, S., Sasaki, J., Okutsu, Y., Nakamura, T., Taninaka, A., Takeuchi, O., Shigekawa, H., 2006. Bond fluctuation of S/Se anchoring observed in single-molecule conductance measurements using the point contact method with scanning tunneling microscopy. J. Am. Chem. Soc. 128, 7746-7747.
Yother, J., Volanakis, J. E., Briles, D.E., 1982. Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in mic. J. Immunol. 128 (5), 2374-2376.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文延後至2009-03-01公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2009-03-01公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信