淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1709202009183700
中文論文名稱 數位孿生於機械手臂虛實整合之研究
英文論文名稱 Study of Digital Twin in Virtual and Real Robot Arm
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 陳彥甫
研究生英文姓名 Yan-Fu Chen
學號 607370193
學位類別 碩士
語文別 中文
口試日期 2020-07-21
論文頁數 50頁
口試委員 指導教授-楊智旭
委員-陳冠辰
委員-陳昱均
中文關鍵字 數位孿生  智慧製造  OPCUA  Visual Components  工業手臂 
英文關鍵字 Digital Twin  Smart manufacturing  OPC UA  Visual Components  Industrial robot 
學科別分類 學科別應用科學機械工程
中文摘要 本論文探討以數位孿生(Digital Twin, DT)作為現代智慧製造的核心,數位孿生是一種虛實整合技術,即充分運用感測器的資訊蒐集,並分析導入的數據與整合各種設備的模擬,創造數位孿生的多方面應用與發展,意即「數位孿生」是企業利用聯網技術將數據、條件、事件資料做整合分析,改善企業商品設計、製造及維護的運作,就是以實物藉由感測器來偵測周遭環境及狀態,並將蒐集的資料處理分析後,將最佳數據直接套用於實物,達成智能製造的成果。本研究的目標是以日本FANUC工業機械手臂作為數位孿生技術的應用,以驗虛實整合應用之優點。
DT是透過通信協定(OPC UA)開發的技術。由於OPC UA是開放性的通信協定,應用於工業設備及系統中,進行資料收集與控制通訊,因為是公開軟體,可以免費取得,實作設備不需授權費,也沒有其他限制,也具備跨平台,不限制作業系統或是程式語言的限制,也可針對用戶提供服務的架構(SOA)與穩定的安全信息特性,是目前資訊整合最廣泛的應用。所以被稱為工業4.0的先驅。而在模擬軟體方面,Visual Components 4.2(VC 4.2)是開發可視化呈現的最佳選擇。本論文主要探討虛擬模擬軟體(VC)及在工業機器手臂連動之技術開發,藉由通信平台(OPC UA)選擇適當的通訊參數,來整合數位孿生技術於自動化產線的實現。
英文摘要 This thesis explores the use of Digital Twin (DT) as a keypoint in this modern industrial revolution. The DT can be described as a digital replica of a physical system including data about this systems interaction with its environment. The goal of this thesis is to develop a robotic Media Transfer Protocol (MTP) for DT, and investigate what benefits could be gained from introducing the technology in this system and the domain of automated robotic systems in general.
The DT was developed using the OPC UA communication architecture. OPC UA is called the pioneer of Industry 4.0 as it is a communication architecture aiming at the standardization of communication in industry. It was concluded that Visual Components 4.2(VC 4.2) was the strongest candidate for developing a visual representation of the robot cell. Using VC 4.2 and OPC UA a DT of the robot cell was created.
Most of the work done in this thesis revolved around creating communication modules able to connect the physical robot cell to the virtual representation in VC4.2, through the use of OPC UA. The result of this work must develop a communication library, containing the virtual representation of the robot cell and the different communication modules able to give the DT various functionalities.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 IV
誌 謝 VI
圖目錄 VII
第一章緒論 1
1.1 文獻探討 1
1.1.1 工業4.0 1
1.1.2物聯網 (IoT) 5
1.1.3數位孿生(Digital Twins) 6
1.2 研究動機與目的 8
第二章研究理論 10
2.1 通訊協定 10
2.1.1 OPC 10
2.1.2 OPC UA 11
2.1.3 CPS和CPPS 13
2.2 模擬軟體 14
2.3 手臂離線編程 (Offline Programming) 16
2.4 Fanuc Robot 基礎參數設定 17
2.5 手臂控制軟體 18
第三章研究方法 20
3.1 研究步驟 20
3.2 軟體選定 21
3.2.1 Visual Components 21
3.2.2 RoboDK 22
3.2.3 UAModeler & UAExpert 23
3.3 虛擬佈局建立 24
3.4 物理佈局建置 25
3.5 通訊協定建立 26
3.5.1建立OPC UA連線 26
3.5.2建立DT功能 29
3.6 Python程式編程 30
3.6.1標準化OPC UA伺服器資訊 30
3.6.2設置RSI通訊 33
3.7 功能驗證 34
3.8 實際案例的應用 36
第四章研究結果 43
4.1 數位孿生於VC4.2效果 43
4.2 通訊資料庫 44
第五章結論 45
參考文獻 46
附錄 49

圖目錄
圖1- 1 工業革命發展 2
圖1- 2 物聯網結構 3
圖1- 3 物聯網架構示意 5
圖1- 4 數位孿生概念圖 7
圖1- 5 虛實整合 9
圖2- 1 OPC連線概念 11
圖2- 2 OPC UA可支援的設備平台 12
圖2- 3 Visual Components 16
圖2- 4 軟體離線編程 17
圖2- 5 Fanuc M20-ia外觀 18
圖2- 6 RoboDK軟體介面示意圖 19
圖3- 1 研究流程圖 21
圖3- 2 RoboDK連線介面 23
圖3- 3 虛擬佈局展示 24
圖3- 4 物理佈局-正視圖 25
圖3- 5 物理佈局-斜視圖 26
圖3- 6 啟用伺服器-Linux 27
圖3- 7 啟用伺服器-Windows 28
圖3- 8 Visual Components參數連結 29
圖3- 9 數據模塊處理架構 32
圖3- 10 Visual Components參數顯示狀態 33
圖3- 11 Fanuc示教器 35
圖3- 12 手臂原點姿態-VC 36
圖3- 13 手臂原點姿態-實體 37
圖3- 14 手臂取料預備點-VC 38
圖3- 15 手臂取料預備點-實體 38
圖3- 16 手臂取PCB物料-VC 39
圖3- 17 手臂取PCB物料-實體 39
圖3- 18 手臂放料預備點-VC 40
圖3- 19 手臂放料預備點-實體 40
圖3- 20 手臂放置PCB物料-VC 41
圖3- 21 手臂放置PCB物料-實體 41
圖3- 22 手臂完成姿態-VC 42
圖3- 23 手臂完成姿態-實體 42
圖4- 1 DT效果展現 44
參考文獻 [1]S. F. Su, I. J. Rudas, J. M. Zurada, M. J. Er, J. H. Chou, and D. Kwon. Industry 4.0: A Special Section in IEEE Access. IEEE Access, 5:12257–12261,2017.
[2]Christoph Roser. How Industry 4.0 Came into Existence, http://www.allaboutlean.
com/industry-4-0/, 2015. Accessed: 06-11-2017.
[3]陳威翰,智慧工廠之IoT技術運用,明新科技大學機械工程系精密機電工程碩士班,2017
[4]Dr. Johannes Helbig Prof. Dr. Henning Kagermann, Prof. Dr. WolfgangWahlster. Recommendations for Implementing The Strategic Initiative Industry 4.0. In Securing the Future of German Manufacturing Industry. Acatech – National Academy of Science and Engineering, 2013. Accessed:06-11-2017.
[5]Janakiram MSV, The Role of Device Twins in Industrial IoT Solution. http://www. Forbes.com/sites/janakirammsv/2017/10/30/therole-of-device-twins-in-designing-industrial-iot-solutions/#3b47a86820ac, 2017. Accessed: 05-11-2017.
[6]Qinglin Qi, Fei Tao. IEEE, Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0, 3585-3593.
[7]Roland Rosen, Georg Von Wichert, George Lo, and Kurt D. Bettenhausen. About the Importance of Autonomy and Digital Twins for The Future of Manufacturing. IFAC Papers On Line, 48(3):567–572, 2015.
[8]Siemens. Twins with Potential. https://www.siemens.com/customermagazine/en/ho
me/industry/digitalization-in-machine-building/the-digital-twin:html, 2017.Accessed:18-10-2017.
[9]Oracle, Digital Twins for IoT Applications. http://www.oracle.com/us/solutions/
internetofthings/digital-twins-for-iot-apps-wp-3491953.pdf, 2017. Accessed: 19-10-2017.
[10]Emans, Digital Twin: The Leading Technology of Smart Industry, https:// www.anasoft.com/emans/en/home/news-blog/blog/Digital-Twin-The-Leading-Technology-of-Smart-Industry, 2019
[11]陳響亮、范智翔,基於 OPC UA 工業自動化設備資訊監控系統,國立成功大學製造資訊與系統研究所
[12]林廉詠,自動化OPC之實現,國立暨南國際大學電機工程學系,2009
[13]吳世皓,以分散式OLE物件建構廣用性主從架構系統之理論與應用,中原大學電子工程學系,1996
[14]Novotek Corp. OPC and OPC UA Explained. http://www.novotek.com/en/solutions https://www:novotek:com/en/solutions/kepware-communication-platform/opc-and-opc-uaexplained, 2017. Accessed: 06-10-2017.
[15]Sven Goldstein OPC Foundation. OPC UA Information Model for Advanced Manufacturing(industry4.0).https://www.hiindustryexpo.com/activities/ digitalization-conference,2017. Accessed: 05-05-2018.
[16]程鳳芷,適用工業4.0的虛實化系統架構及其發展方法,東海大學工業工程與經營資訊學系,2016
[17]Miriam Schleipen, Syed-Shiraz Gilani, Tino Bischoff, and Julius Pfrommer. OPC UA & Industrie 4.0 - Enabling Technology with High Diversity and Variability. Procedia CIRP, 57:315–320, 2016.
[18]United States MI. Visual components company Profile. http://www.robtic.org/com- pany-profile-detail.cfm/Supplier/VisualComponents/company/833, 2017. Accessed: 06-11-2017.
[19]謝守澤,以人機系統協同為基礎的數位人模擬方法,國立清華大學工業工程與工程管理學系,2011
[20]Tyler Yanta. In-house Solutions Introduces Octopuz Robotic and Simulation Software. http://www.inhousesolutions.com/2014/01/housesolutions-introduces-octopuz-robotic-simulation-software/, 2014.Accessed: 06-11-2017.
[21]Eirik Bjørndal Njåstad. Robotic Welding with Corrections from 3D- Camera. https://
Brage.bibsys.no/xmlui/handle/11250/2351215. Accessed:06-06-2018.
[22]林愉珍,基於六自由度移動平台之高自由度機械手臂之最佳化命令生成,成功大學航空太空工程學系,2019
[23]Fanuc Robotics America, Inc, Method of Controlling a Robotic Tool, 2010
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-09-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-09-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信