§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1708201613340300
DOI 10.6846/TKU.2016.00458
論文名稱(中文) 二氧化矽奈米粒子之合成與其在超親水及超疏水塗膜之應用
論文名稱(英文) Synthesis of silica nanoparticles for applications in superhydrophilic and superhydrophobic coatings
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 林咨旻
研究生(英文) Zi-Min Lin
學號 603400135
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-19
論文頁數 79頁
口試委員 指導教授 - 鄭廖平
委員 - 張朝欽
委員 - 黃逢璽
關鍵字(中) 超親水
防霧
防霜
抗反射
關鍵字(英) super-hydrophilic
anti-fogging
anti-frosting
anti-reflective
第三語言關鍵字
學科別分類
中文摘要
本研究以溶膠凝膠法製備超親水有機-無機奈米複合材料並將其應用於光學鍍膜之製作。論文主要分為超親水防霧防霜塗膜及超親水防霧抗反射塗膜兩個部份,摘其要點如下。 
防霧防霜塗膜:實驗中已成功合成出含雙鍵的改質界面活性劑(T20),可以直接添加到塗料配方中參與UV交聯聚合反應。而透過雙層塗佈的設計,也具備可以水洗的特色所製得防霧防霜塗膜。結果顯示T20在塗膜中含量達70 wt%時,即可以在80℃之熱蒸氣試驗中展現極佳的防霧效果,而將冷卻至-20℃的塗膜放置於室溫環境中(70%RH)可以在約30~40秒的時間內完成退霜,回復原本的高穿透度,且塗膜具備4H之硬度和100%之PMMA附著性,有很高的實用潛力。
防霧抗反射塗膜:實驗中利用添加於塗料中TiO2製備高折射率塗層,添加改質二氧化矽和改質Tween20製備親水低折射率塗層,並利用下(高折射)/上(低折射)的雙層塗佈方式來製備防霧且抗反射塗膜,探討旋轉塗佈的轉速對膜厚的影響,且經由電腦輔助軟體模擬出最佳抗反射效果之薄膜厚度做為實驗時厚度參考依據。實驗結果顯示,當下層與上層塗膜為109 nm與79 nm時,能達到最佳抗反射效果,其反射率僅為1.09%的反射率,且於熱蒸氣測試也有良好的防霧表現。
英文摘要
n this study, organic - inorganic nanocomposites with super-hydrophilic property are prepared by the sol-gel method, and applied on the preparation of optical coatings. The thesis is divided into two parts: (1) super-hydrophilic antifog/antifrost coatings and (2) super-hydropholic antifog/anti-reflection coatings. The major findings are abstracted below.

antifog/antifrost coatings : Surfactants containing double bonds (T20) were  successfully synthesized and added into the coating formulations directly to form coatings via UV-curing polymerization process. Through the double layer design hydrophilic anti-fog and anti-frost coatings were prepared which also possess the benefit of water-washable. The steam and frost test results show that as the coatings contain up to 70 wt% T20, they are antifogging and able to defrost and regain high transparent within 30~40s at room temperature (70%RH) after pre-cooled to -20 ℃ in the fridge. Also, the coatings have high hardness of 4H and adhere perfectly to the substrate (PMMA), demonstrating good potentials in optical coating applications.
antifog/anti-reflection coatings: In this part, TiO2 were added to the formulation to prepared the high refractive index (RI) coating layer, which modified silica and modified Tween20 were added to coating formulation to prepare hydrophilic coating of low refractive index. Using double-layer design, the effect of spin coating rate on the thickness of the coating was investigated. Using bottom(high RI)/top(low RI) double layer design, antifog/anti-reflection coatings were prepared successfully. The effect of spinning rate on the thickness of the coating was investigated. Based on the computer-aided software, the thickness of the coating layers were optimized. The result shows that when the bottom and top layer coating thicknesses are 109 nm and 79 nm, respectively, the best antireflection performance, only 1.09% of the reflectance, is achieved. Steam test also indicates that this coating has very good anti-fog performance.
第三語言摘要
論文目次
目錄
中文摘要	IV
英文摘要	IV
目錄	IV
表目錄	VI
圖目錄	VII
第一章 總論	1
第二章 超親水塗膜之合成與製備	3
2.1 前言	3
2.2 實驗部份	6
2.2.1實驗藥品	6
2.2.2 實驗方法與流程	8
2.2.3 物性分析步驟	12
2.3 結果與討論	16
2.3.1 改質界面活性劑之FTIR光譜分析30-32	16
2.3.2 DLS粒徑分析	17
2.3.3 二氧化矽/聚酯黏著層之FTIR分析	19
2.3.4 塗膜UV-vis穿透度分析	21
2.3.5 塗膜親水性及熱蒸汽防霧測試	22
2.3.6 塗膜防霜測試	25
2.3.7 表面輪廓及FESEM分析	30
2.3.8 塗膜之機械性質測試	32
2.4 結論	36
2.5	參考文獻	37
第三章 親水抗反射塗膜之製備	41
3.1前言	41
3.2實驗	43
3.2.1實驗藥品	43
3.2.2實驗方法與流程	45
3.2.3 雙層抗反射膜之塗佈厚度探討	47
3.2.4 物性分析步驟	48
3.3 結果與討論	52
3.3.1 FTIR分析	52
3.3.3 塗膜之FESEM影像分析	55
3.3.4 親水抗反射塗膜之光學軟體模擬分析	56
3.3.5 親水抗反射塗膜之厚度與穿透度分析	57
3.3.6 親水抗反射膜之接觸角、熱蒸氣測試、硬度及附著	62
3.4結論	64
3.5 參考文獻	65
附錄 A	69

 
表目錄
表2-1 改質二氧化矽之藥品組成	9
表2-2 二氧化矽/聚酯黏著層之藥品組成	9
表2-3 改質界面活性劑之藥品組成	11
表2-4 親水塗膜之藥品組成	11
表2-5 塗膜之UV-vis平均穿透度	21
表2-6 塗膜之接觸角及熱蒸氣防霧性能	23
表2-7 PMMA與B系列塗膜防霜測試	27
表2-8 B系列塗膜之厚度及膜表面之平均粗糙度	31
表2-9 塗膜硬度、附著度及耐磨測試	33
表3-1 製備TiO2之藥品組成	46
表3-2 二氧化鈦/聚酯塗膜之藥品組成	46
表3-3 抗反射塗膜之接觸角、熱蒸氣測試、硬度及附著度測試	62
表A-1 (b)~(e)各塗膜接觸角、平均穿透度(380nm~780nm)與附著測試	77

 
圖目錄
圖2-1 二氧化矽/聚酯黏著層之製備流程	8
圖2-2 親水塗膜之製備流程	10
圖2-1 改質界面活性劑過程中各階段反應的FTIR光譜	16
圖2-2 改質界面活性劑T20之粒徑	17
圖2-4 DS30黏著層於不同曝光能量下之FTIR光譜	20
圖2-5 塗膜於PMMA基板上之UV-vis穿透度	21
圖2-6 PMMA與B系列塗膜熱蒸氣防霧測試照片	24
圖2-7 不同接觸角塗膜防霜測試光譜	26
圖2-8 塗膜防霜測試之時間平均穿透度(380~740nm)比較圖	27
圖2-9 PMMA與塗膜BT7之防霜測試照片(27℃, ~69% RH)	29
圖2-10 BT7塗膜之厚度及表面輪廓測試	30
圖2-11 塗膜之FESEM影像	31
圖2-12 PMMA與B系列塗膜經耐磨測試後之穿透度	34
圖2-13 不同耐磨圈數下,塗膜之平均穿透度(380-780nm)比較	35
圖3-1 二氧化鈦/聚酯塗膜之製備流程圖	45
圖3-2 雙層塗膜示意圖	47
圖3-5 TiO2粒子之TEM影像	54
圖3-6 塗膜之上表面FESEM影像	55
圖3-7 下層(109nm)/上層(76nm)塗膜之截面FESEM影像	55
圖3-8 固定折射率下以光學軟體模擬之最佳化厚度	56
圖3-9 旋轉塗佈轉速與厚度關係圖	58
圖3-10 塗膜之折射率量測 (a) 上層BT7塗膜 (b) 下層Ti80塗膜	59
圖3-11 塗膜在可見光範圍之穿透度(左)與反射率(右)	60
圖3-12 模擬理論值與實驗值反射率比較圖	61
圖3-13 PMMA基板(左)與親水抗反射塗膜(右)之熱蒸氣測試	63
圖A-1 中空二氧化矽溶膠製備流程	69
圖A-2 S-sol經離心水洗不同次數之FTIR光譜	70
圖A-3 中空二氧化矽粒子之粒徑分佈	70
圖A-4中空二氧化矽粒子之TEM影像 (a,b)未熟化6天(c,d)熟化6天	71
圖A-5 MS-sol之製備流程	72
圖A-6 MS-sol於不同反應時間下之FTIR光譜(未離心)	72
圖A-7 MS-sol於不同反應時間下之FTIR光譜(離心後)	73
圖A-8 MS-sol改質6天後不同離心次數之FTIR光譜	73
圖A-9 FS-sol之製備流程	74
圖A-10 FIS之製備流程	74
圖A-11 FSIS之製備流程	75
圖A-12 FMIS之製備流程	75
圖A-13 MIS-F之實驗示意圖	76
圖A-14 改質中空二氧化矽粒子之FTIR	77
圖A-15 FIS之表面FESEM影像	78
圖A-16 FSIS之表面FESEM影像	78
圖A-17 FMIS之表面FESEM影像	79
圖A-18 MIS之表面FESEM影像	79
參考文獻
第二章 參考文獻
1.	黃逢璽,「感光性有機-無機奈米複合材料的製備與其於光學鍍膜之應用」,淡江大學化學工程與材料工程學系博士論文,2008
2.	蔡宗穎,「塑膠基材上製備二氧化矽/壓克力聚合物抗霧鍍膜」,淡江大學化學工程與材料工程學系碩士論文,2012
3.	王冠中,「二氧化矽/高分子防霧鍍膜之製備與性質研究」,淡江大學化學工程與材料工程學系碩士論文,2007
4.	陳建銘,「溶膠凝膠法製備紫外光硬化型抗眩鍍膜」,淡江大學化學工程與材料工程學系碩士論文,2007
5.	歐陽岱岳,「改質奈米二氧化矽/高分子複合材料之製備與物性分析」,淡江大學化學工程與材料工程學系碩士論文,2005
6.	陳品莼,「溶膠凝膠法製備有機-無機混成彩色光學塗膜」,淡江大學化學工程與材料工程學系碩士論文,2013年。
7.	C.C. Chang, F.H. Huang, H.H. Chang, T.M. Don, C.C. Chen, L.P. Cheng, Preparation of Water-Resistant Antifog Hard Coatings on Plastic Substrate, Langmuir, 2012, 28, 17193.
8.	J. Drelich, E. Chibowski, D.D. Mengb, K. Terpilowskic, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter, 2011, 7, 9804.
9.	E.J.A. Pope, M. Asami, J.D. Mackenzie, Transparent silica gel-PMMA composites, J. Mater. Res, 1989,4, 1018.
10.	B. J. Briscoe, K.P. Galvin, The effect of surface fog on the transmittance of light, Sol. Energy, 1991, 46, 191.
11.	H. Zhao, D. Beysens, From Droplet Growth to Film Growth on a Heterogeneous Surface: Condensation Associated with a Wettability Gradient, Langmuir 1995, 11, 627.
12.	X. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces, Adv. Mater. 2006, 18, 3036.
13.	M. Ueno, Y. Ugajin, K. Horie, T. Nishimura, Antifogging effect of cellulose films by chemical modification of the surface using nonionic fluorocarbon surfactant, J. Appl. Polym. Sci, 1990, 39, 967.
14.	L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-Icing Superhydrophobic Coatings, Langmuir, 2010, 25, 12444.
15.	Y. Wang, T. Li, S. Li, J. Sun, Antifogging and Frost-Resisting Polyelectrolyte Coatings Capable of Healing Scratches and Restoring Transparency, Chem. Mater, 2015, 27, 8058
16.	J. Zhao, A. Meyer, L. Ma, W. Ming, Acrylic coatings with surprising antifogging and frost-resisting properties, Chem. Commun, 2013, 49, 11764.
17.	內政部建築研究所委託研究報告-綠色便利商店分級認證及節能改造計畫成果報告,2011,35
18.	X. Zhang, J. He, Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films, Scientific reports 5, 2015, 9227
19.	Y. Yuan, R. Liu, C. Wang, J. Luo, X. Liu, Synthesis of UV-curable acrylate polymer containing sulfonic groups for anti-fog coatings, Progress in Organic Coatings, 2014, 77, 785.
20.	S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem Rev, 2015,115, 8230
21.	G. Grosu, L. Andrzejewski, G. Veilleux, G.G. Ross, Relation between the size of fog droplets and their contact angles with CR39 surfaces, J. Phys. D Appl. Phys, 2004, 37, 3350.
22.	P. Kim, T.S. Wong, J. Alvarenga, M.J. Kreder, W.E. Adorno-Martinez, J.Aizenberg, Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance, ACS Nano, 2012, 6, 6569.
23.	Mahmoud H.M.A. Shibraen, H. Yagoub, X. Zhang, J. Xu, S. Yang, Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film, Applied Surface Science, 2016, 370, 1.
24.	D. Tahk, T. Kim, H. Yoon, M. Choi, K. Shin and K. Y. Suh, Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photopolymerization and Dry Etching, Langmuir, 2010, 26, 2240.
25.	L. Maechler, C. Sarra-Bournet, P. Chevallier, N. Gherardi, G. Laroche, Anti-Fog Layer Deposition onto Polymer Materials: A Multi-Step Approach, Plasma Chem. Plasma Process, 2011, 31, 175.
26.	R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry, 1936, 28, 8, 988.
27.	X. Li, J. He, In situ Assembly of Raspberry- and Mulberry-like Silica Nanospheres toward Antireflective and Antifogging Coatings, ACS Appl. Mater. Interfaces, 2012, 4, 2204.
28.	N. Nuraje, R. Asmatulu, R.E. Cohen, M.F. Rubner, Durable Antifog Films from Layer-by-Layer Molecularly Blended Hydrophilic Polysaccharides, Langmuir, 2010, 27, 782.
29.	H. Lee, M.L. Alcaraz, M.F. Rubner, R.E. Cohen, Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities, ACS nano, 2013, 7, 2172.
30.	G. Socrates, Infrared and Raman characteristic group frequencies : tables and charts, Chichester, New York, Wiley, 2001.
31.	C.K. Chan, S.L. Peng, I.M. Chu, S.C. Ni, Effects of heat treatment on the properties of poly(methyl meth-acrylate)/silica hybrid materials prepared by
sol-gel process, Polymer, 2001, 42, 4189
32.	Y.Y. Yu, C.Y. Chen, W.C. Chen, Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica, Polymer, 2003, 44, 593
第三章 參考文獻
1.	黃逢璽,「溶膠凝膠法製備紫外光硬化型抗反射鍍膜」,淡江大學化學工程與材料工程學系碩士論文,2005
2.	林佳穎,「應用於紫外光交聯高折射率有機-無機混成薄膜之二氧化鈦溶膠的製備與分析」,淡江大學化學工程與材料工程學系碩士論文,2011
3.	X. Zhang, Y. Zhang, Y. Haiping, B. Xiao, Y. Lianghong, L. Haibing, B. Jiang, Sol–gel preparation of antireflective coatings at 351 nm with different thickness and improved moisture-resistance, J. Sol-Gel Sci. Technol., 2011, 58, 340.
4.	Z. Wu, J. Walish, A. Nolte, L. Zhai, R.E. Cohen, M.F. Rubner, Deformable Antireflection Coatings from Polymer and Nanoparticle Multilayers, Adv. Mater., 2006, 18, 2699.
5.	J. B. Han, Y. B. Dou, M. Wei, D.G. Evans, X. Duan, Erasable Nanoporous Antireflection Coatings Based on the Reconstruction Effect of Layered Double Hydroxides, Angew. Chem., 2010, 49, 2171.
6.	Y.F. Li, J.H. Zhang, S.J. Zhu, H.P. Dong, F. Jia, Z.H. Wang, Z.Q. Sun, L. Zhang, Y. Li, H.B. Li, W.Q. Xu, B. Yang, Biomimetic Surfaces for High-Performance Optics, Adv. Mater., 2009, 21, 4731.
7.	J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A.A.R. Watt, G. Wakefield, High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles, Appl. Mater. Interfaces, 2012, 4, 854.
8.	J. Moghal, S. Reid, L. Hagerty, M. Gardener, G. Wakefield, Thin Solid Films, 2013, 534, 541.
9.	O. Kesmez, H.E. Camurlu, E. Burunkaya, E. Arpaç, Sol–gel preparation and characterization of anti-reflective and self-cleaning SiO2–TiO2 double-layer nanometric films, Sol. Energy Mater. Sol. Cells, 2009, 93, 1833.
10.	M. Cid, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos, Improvements in antireflection coatings for high-efficiency silicon solar cells, Surf. Coat. Technol., 1998, 106, 117.
11.	G.E. Jellison, R.F.Wood, Antireflection coatings for planar silicon solar cells, Sol. Cells, 1986, 18, 93.
12.	Z. Chen, P. Sana, J. Salami, A. Rohatgi, A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells, IEEE Trans. Electron Devices, 1993, 40,1161. 
13.	M. Cudzinovic, T. Pass, A. Terao, P.J. Verlinden, R.M. Swanson, Degradation of surface quality due to anti-reflection coating deposition on silicon solar cells, 28th IEEE Photovoltaic Specialists Conf, 2000, 295.
14.	S.J. Patil, K.C. Mohite, A.B. Mandale, M.G. Takwale, S.A. Gangal, Characterization of ‘ARE’ deposited silicon nitride films and their feasibility as antireflection coating, Surf. Coat. Technol., 2005, 200, 2058.
15.	Y. Wang, X. Cheng, Z. Lin, C. Zhang, H. Xiao, F. Zhang, S. Zou, Analysis of IBAD silicon oxynitride film for anti-reflection coating application, J. Non-Cryst. Solids, 2004, 333, 296.
16.	W. Qiu, Y.M. Kang, L.L. Goddard, Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings, Appl. Phys. Lett.,2010, 96, 141116.
17.	黃逢璽,「感光性有機-無機奈米複合材料的製備與其於光學鍍膜之應用」,淡江大學化學工程與材料工程學系博士論文,2008
18.	蔡宗穎,「塑膠基材上製備二氧化矽/壓克力聚合物抗霧鍍膜」,淡江大學化學工程與材料工程學系碩士論文,2012
19.	王冠中,「二氧化矽/高分子防霧鍍膜之製備與性質研究」,淡江大學化學工程與材料工程學系碩士論文,2007
20.	陳建銘,「溶膠凝膠法製備紫外光硬化型抗眩鍍膜」,淡江大學化學工程與材料工程學系碩士論文,2007
21.	歐陽岱岳,「改質奈米二氧化矽/高分子複合材料之製備與物性分析」,淡江大學化學工程與材料工程學系碩士論文,2005
22.	C.C. Chen, D.J. Lin, T.M. Don, F.H. Huang, L.P. Cheng, Preparation of organic–inorganic nano-composites for antireflection coating, J. Non Cryst. Solids, 2008, 354, 3828
23.	N. J. Shirtcliffe, G. Mchale, M.I. Newton, C.C. Perry, P. Roach, Porous materials show superhydrophobic to superhydrophilic switching, Chem. Commun., 2005, 3135.
24.	X. M. Liu, J.H. He, Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres, J. Colloid Interface Sci., 2007, 314, 341.
25.	L. M. Wang, Y. Lin, B. Peng, Z.H. Su, Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers, Chem. Commun., 2008, 5972.
26.	X. M. Liu, J.H. He, Superhydrophilic and Antireflective Properties of Silica Nanoparticle Coatings Fabricated via Layer-by-Layer Assembly and Postcalcination, J. Phys. Chem. C, 2009, 113, 148.
27.	L.B. Zhang, Y. Li, J.Q. Sun, J.C. Shen, Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination, Langmuir, 2008, 24, 10851.
28.	T. Ohdaira, H. Nagai, S. Kayano, H. Kazuhito, Antifogging effects of a socket-type device with the superhydrophilic, titanium dioxide-coated glass for the laparoscope, Surgery Endoscopy., 2007, 21, 333.
29.	.L. Zhang, Z.A. Qiao, M. Zheng, Q. Huo, J. Sun, Rapid and substrate-independent layer-by-layer fabrication of antireflection- and antifogging-integrated coatings, J. Mater. Chem., 2010, 20, 6125. 
30.	L. Xu, J. He, Antifogging and Antireflection Coatings Fabricated by Integrating Solid and Mesoporous Silica Nanoparticles without Any Post-Treatments, ACS Appl. Mater. Interfaces, 2012, 4, 3293
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信