§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1708201511430500
DOI 10.6846/TKU.2015.00488
論文名稱(中文) 交流型多行程萃取之改良型修正因子
論文名稱(英文) Membrane extraction in cross-flow multipass modules with modified correction-factor analysis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 陳衍亨
研究生(英文) Yen-Heng Chen
學號 602400136
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-16
論文頁數 76頁
口試委員 指導教授 - 葉和明(hmyeh@mail.tku.edu.tw)
委員 - 何啟東
委員 - 蔡少偉
關鍵字(中) 薄膜萃取
改良型修正因子
交流型
關鍵字(英) Membrane extraction
Modified correction-factor analysis
cross flow
第三語言關鍵字
學科別分類
中文摘要
本文主要探討在三行程交流式薄膜萃取系統中質量傳送速率之改良型修正因子分析。本研究對三行程交流式薄膜萃取系統的質傳面積、體積流率、分配係數和整體質量傳送係數等參數,繪製出的改良型修正因子圖表,無須經過繁雜的疊代步驟,即可直接由圖表得到修正因子,並配合本文中改良後的質傳速率公式,就能容易的求解出薄膜萃取速率,比起傳統的修正因子分析圖表,因含有未知出口濃度的因素,而在計算上必須使用繁雜的疊代法,改良型修正因子分析則改善了求解萃取速率的便利性。此改良型修正因子分析的概念也可應用於其他傳統的熱、質傳交換器中,本研究採以甲基異丁基酮(MIBK)薄膜萃取醋酸實驗結果來對改良型修正因子分析所得到的萃取速率理論值進行佐證。
英文摘要
The expressions of mass-transfer rate for membrane extraction through a cross-flow multipass membrane module have been derived based on the modified correction-factor analysis. These expressions, as well as the correction-factor charts modified, are explicit and the results can be readily calculated without using try-and-error method, which should be employed in the conventional correction-factor analysis for designing heat and mass exchangers. Experimental results confirm the predicted values for membrane extraction of acetic acid from aqueous solution by methyl isobutyl ketone in cross-flow multipass device.
第三語言摘要
論文目次
目   錄
中文摘要	II
英文摘要	III
目   錄	IV
圖目錄	VII
第一章 緒論	1
1-1前言	1
1-2液膜分離技術之發展與應用	3
1-3薄膜分離之應用	8
1-4薄膜萃取技術之介紹	9
1-5研究目的	14
第二章 文獻回顧	15
第三章 理論分析	20
3-1 質量傳送係數	20
3-2改良型修正因子分析	26
3-3 薄膜萃取系統之出口濃度	30
3-3-1 三行程順流型交流式薄膜萃取系統	30
3-3-2 三行程逆流型交流式薄膜萃取系統	41
第四章 範例計算	52
第五章 結果與討論	55
5-1 三行程平板薄膜萃取系統之改良型修正因子圖表	55
5-2 三行程平板薄膜萃取系統之理論與實驗數據比較結果	60
第六章 結論	69
符號說明	70
參考文獻	73

表目錄
表1薄膜分離程序應用領域	8

圖目錄
圖1乳化型液膜	7
圖2支撐式液膜	7
圖3分液漏斗	10
圖4疏水性微孔薄膜系統	11
圖5親水性微孔薄膜系統	11
圖6疏水性平板多孔薄膜系統	21
圖7平板多孔性薄膜系統濃度梯度示意圖	21
圖8 三行程順流型交流式平板薄膜萃取系統示意圖	31
圖9 三行程順流型交流式平板薄膜萃取系統座標俯視示意圖	32
圖10 三行程逆流型交流式平板薄膜萃取系統示意圖	42
圖11 三行程逆流型交流式平板薄膜萃取系統座標俯視示意圖	43
圖12 三行程順交流薄膜萃取之改良型修正因子圖表F1 vs a	56
圖13 三行程順交流薄膜萃取之改良型修正因子圖表F2 vs a	57
圖14 三行程逆交流薄膜萃取之改良型修正因子圖表F1 vs a	58
圖15 三行程逆交流薄膜萃取之改良型修正因子圖表F2 vs a	59
圖16三行程順交流式系統在Qb×10 6= 0.125 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	61
圖17三行程順交流式系統在Qb×10 6= 0.25 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	62
圖18三行程順交流式系統在Qb×10 6= 0.5 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	63
圖19三行程順交流式系統在Qb×10 6= 1.5 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	64
圖20三行程逆交流式系統在Qb×10 6= 0.125 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	65
圖21三行程逆交流式系統在Qb×10 6= 0.25 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	66
圖22三行程逆交流式系統在Qb×10 6= 0.5 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	67
圖23三行程逆交流式系統在Qb×10 6= 1.5 m3/s、Cb,i = 0時,	
    總質傳速率理論值與實驗值關係圖	68
參考文獻
[1] Bromberg L, Lewin I, Warshawsky A. Membrane extraction of silver by di- (2-ethylhexyl) dithiophosphoric acid. J Membr Sci 1992;70:31-9. 
[2] Cussler E. Membranes which pump. AIChE J 1971;17:1300-3. 
[3] Dayal U, Rawat B. The Technique of Permeation through Liquid Membranes. J.Sci.Ind.Res 1978;37:602 -11
[4] Frankenfeld JW, Cahn RP, Li NN. Extraction of copper by liquid membranes. Sep Sci Technol 1981;16:385-402. 
[5] Goswami A, Rawat B. Permeation of hydrocarbons through liquid surfactant membranes and formation of liquid crystalline structures. J Membr Sci 1984;20:261-72. 
[6] Hayworth H, Ho W, Burns Jr W, Li NN. Extraction of uranium from wet process phosphoric acid by liquid membranes. Sep Sci Technol 1983;18:493-521. 
[7] Li NN. Permeation through liquid surfactant membranes. AIChE J 1971;17:459-63. 
[8] Li NN. Separation of hydrocarbons by liquid membrane permeation. Ind. Eng. Chem. Process Des. Dev.1971;10:215-21. 
[9] Li NN.  Liquid separation through a permeable membrane in droplet form. U S Patent 1968;289:078-3 
[10] May SW, Li NN. The immobilization of urease using liquid-surfactant membranes. Biochem Biophys Res Commun 1972;47:1179-85. 
[11] Muruganandam N, Paul D. Evaluation of substituted polycarbonates and a blend with polystyrene as gas separation membranes. J Membr Sci 1987;34:185-98. 
[12] Pez GP, Carlin RT. Method for gas separation 1986. US 06/707,298
[13] Way JD, Noble RD, Flynn TM, Sloan ED. Liquid membrane transport: a survey. J Membr Sci 1982;12:239-59. 
[14] Baker R, Wijmans J, Kaschemekat J. The design of membrane vapor–gas separation systems. J Membr Sci 1998;151:55-62. 
[15] Bryden KJ, Ying JY. Nanostructured palladium–iron membranes for hydrogen separation and membrane hydrogenation reactions. J Membr Sci 2002;203:29-42. 
[16] Desai TA, Hansford D, Ferrari M. Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J Membr Sci 1999;159:221-31. 
[17] Ghosh R. Bioseparation using supported liquid membrane chromatography. J Membr Sci 2001;192:243-7. 
[18] Nicolaisen B. Developments in membrane technology for water treatment. Desalination 2003;153:355-60. 
[19] Pereira CC, Rufino JM, Habert AC, Nobrega R, Cabral LMC, Borges CP. Membrane for processing tropical fruit juice. Desalination 2002;148:57-60. 
[20] Petrotos KB, Quantick PC, Petropakis H. Direct osmotic concentration of tomato juice in tubular membrane–module configuration. II. The effect of using clarified tomato juice on the process performance. J Membr Sci 1999;160:171-7. 
[21] Robeson L. Polymer membranes for gas separation. Curr. Opin. Solid State Mater. Sci 1999;4:549-52. 
[22] Usuda K, Kono K, Watanabe T, Dote T, Shimizu H, Tominaga M et al. Hemodialyzability of ionizable fluoride in hemodialysis session. Sci Total Environ 2002;297:183-91. 
[23] Wilf M, Alt S. Application of low fouling RO membrane elements for reclamation of municipal wastewater. Desalination 2000;132:11-9. 
[24] 謝治政. 中空纖維膜技術簡介. 化工資訊 2002;7:16. 
[25] 陳俊男. 中空纖維生物反應器的發展及應用. 化工資訊 2002;7:16-20. 
[26] Alexander PR, Callahan RW. Liquid-liquid extraction and stripping of gold with microporous hollow fibers. J Membr Sci 1987;35:57-71. 
[27] Babcock W, Baker R, Brooke J, Kelly D, Lachapelle E, Lonsdale H. Coupled transport membranes for metal recovery—phase II. NTIS PB81-179947 1980. 
[28] Dahuron L, Cussler E. Protein extractions with hollow fibers. AIChE J 1988;34:130-6. 
[29] Danesi PR. Separation of metal species by supported liquid membranes. Sep Sci Technol 1984;19:857-94. 
[30] Danesi P, Reichley-Yinger L, Rickert P. Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes. J Membr Sci 1987;31:117-45. 
[31] D'elia NA, Dahuron L, Cussler E. Liquid-liquid extractions with microporous hollow fibers. J Membr Sci 1986;29:309-19. 
[32] Kiani A, Bhave R, Sirkar K. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane. J Membr Sci 1984;20:125-45. 
[33] Majumdar S, Guha AK, Sirkar KK. A new liquid membrane technique for gas separation. AIChE J 1988;34:1135-45. 
[34] Marek B. Enantioselective transport of amino acid through supported chiral liquid membrane. J Membr Sci 1993;85:221-8. 
[35] Prasad R, Kiani A, Bhave R, Sirkar K. Further studies on solvent extraction with immobilized interfaces in a microporous hydrophobic membrane. J Membr Sci 1986;26:79-97. 
[36] Prasad R, Sirkar K. Dispersion‐free solvent extraction with microporous hollow‐fiber modules. AIChE J 1988;34:177-88. 
[37] Schultz JS, Goddard JD, Suchdeo SR. Facilitated transport via carrier‐mediated diffusion in membranes: Part I. Mechanistic aspects, experimental systems and characteristic regimes. AIChE J 1974;20:417-45. 
[38] Sengupta A, Basu R, Sirkar K. Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 1988;34:1698-708. 
[39] Shiau C, Chen P. Theoretical analysis of copper-ion extraction through hollow fiber supported liquid membranes. Sep Sci Technol 1993;28:2149-65. 
[40] Tomida T, Katoh M, Inoue T, Minamino T, Masuda S. Transient analysis of mass-transfer rate in recovering metal ions using a microporous hollow fiber membrane and a water-soluble chelating polymer. Sep Sci Technol 1998;33:2281-93. 
[41] Valenzuela F BC. Application of hollow fiber supported liquid membranes technique to the selective recovery of a low content of copper from a Chilean mine water. J Membr Sci 1999;155:163-8. 
[42] Ward WJ,3rd, Robb WL. Carbon dioxide--oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science 1967;156:1481-4. 
[43] Yun CH, Prasad R, Sirkar KK. Membrane solvent extraction removal of priority organic pollutants from aqueous waste streams. Ind. Eng. Chem. Res. 1992;31:1709-17. 
[44] Jacob M. Heat Transfer, Vol. 1. 1949. 
[45] Tomida T, Katoh M, Inoue T, Minamino T, Masuda S. Transient analysis of mass-transfer rate in recovering metal ions using a microporous hollow fiber membrane and a water-soluble chelating polymer. Sep Sci Technol 1998;33:2281-93. 
[46] Yeh H, Huang C. Solvent extraction in multipass parallel-flow mass exchangers of microporous hollow-fiber modules. J Membr Sci 1995;103:135-50. 
[47] Yeh H. Effect of multipass arrangement on solvent extraction in countercurrently cross-flow rectangular membrane modules of fixed configuration. J Chin Inst Chem Eng 2006;37:159-67. 
[48] 陳嘉信. 平板型交流式薄膜萃取器中行程數對分離效率之影響. 淡江大學化工研究所碩士論文 2000. 
[49] 陳逸科. 平板型交流式薄膜萃取器縱橫比對分離效率之影響. 淡江大學化工研究所碩士論文 1999.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信