§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1708201210090600
DOI 10.6846/TKU.2012.00713
論文名稱(中文) 水下聲波感測網路中自主調整之協同合作路由協定設計
論文名稱(英文) A Self-Adaptive Cooperative Routing Protocol for Underwater Acoustic Sensor Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 陳瑋
研究生(英文) Wei Chen
學號 699410287
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2012-06-22
論文頁數 54頁
口試委員 指導教授 - 陳俊豪(chchen@mail.tku.edu.tw)
委員 - 石貴平
委員 - 蘇民揚
委員 - 王三元
委員 - 陳俊豪
關鍵字(中) 水下聲波感測網路
協同合作
路由機制
聲波
高傳播延遲
關鍵字(英) UWANs
Cooperative
Routing Protocol
Acoustic Wave
Long Propagation Delay
第三語言關鍵字
學科別分類
中文摘要
水下聲波感測網路與陸上無線感測網路特性截然不同,水下聲波感測網路利用聲波進行傳輸,造成水下網路擁有高傳播延遲(Propagation Delay)的特性,若將陸上路由機制直接套用於水下網路,將會衍生出許多問題。因此本論文設計出適用於水下網路環境之路由協定,且在水下聲波感測網路中提出協同合作傳輸(Cooperative transmission),進而減少在水下聲波感測網路中傳送封包之端點到端點間的延遲,並針對協同合作傳輸運作於水下聲波感測網路中,所遭遇高傳播延遲特性之挑戰進行討論。最後本篇論文提出不需同步對時、額外路由控制封包及收集鄰居資訊之協同合作路由協定,名為Self-Adaptive Cooperative Routing Protocol (SACRP)。透過實驗模擬,發現本篇論文所提出之SACRP路由協定,在點對點的延遲、網路傳輸效能以及電量消耗的表現上有顯著的改善。
英文摘要
The thesis proposed a self-adaptive cooperative routing protocol (SACRP) in underwater acoustic sensor networks. SACRP considers the high propagation delay in underwater acoustic sensor networks and uses cooperative transmissions to reduce the end-to-end delay. In addition, SACRP can apply to asynchronous environments. In SACRP, sensors use the location information of sink and the receiving data from the previous hop sensor to determine when and whom to cooperative with. Simulation results show that SACRP achieves improvement over VBF and HH-VBF in terms of end-to-end delay, delivery ratio and energy efficiency.
第三語言摘要
論文目次
目錄
1. 緒論	1
1.1	前言	1
1.2	研究動機與目的	4
1.3	研究方法	6
1.4	論文架構	6
2. 相關文獻	7
3. 預備知識	10
3.1	水下網路訊號衰減模型介紹	10
3.2	水下聲波網路中路由機制所應考慮的特點	13
3.3 	問題敘述	15
3.3.1 	Whom to cooperative with?	16
3.3.2	When to cooperate?	16
3.3.3	封包碰撞問題	17
4. 自主調整之協同合作路由協定(Self-Adaptive Cooperative Routing Protocol,SACRP)	19
4.1	系統架構	19
4.2	基本理念	20
4.3 	Fragment Transmission	21
4.4	Cooperator Selection	22
4.5	Cooperation Direction	25
4.6	Cooperation Timing Decision	26
4.7	SACRP Algorithm	30
5. 網路效能模擬	32
5.1 	實驗場景及參數設定	32
5.2 	實驗結果及分析	33
6. 結論	38
參考文獻	39
附錄-英文論文	43
 
圖目錄
圖 一. 傳播延遲情形比較圖。	2
圖 二. 時間與空間不確定性。	4
圖 三. 協同合作傳輸圖。	5
圖 四. VBF做法示意圖。	8
圖 五. HH-VBF做法示意圖。	8
圖 六. 發送電量依球狀傳輸擴散。	11
圖 七. 發送電量依柱狀面傳輸擴散。	11
圖 八. 訊號疊加區域。	12
圖 九. 找尋協同合作節點示意圖。	16
圖 十. 考慮傳播延遲之協同合作示意圖。	17
圖 十一. 協同合作封包碰撞圖。	18
圖 十二. Segment傳輸示意圖。	22
圖 十三. 候選節點區域示意圖。	23
圖 十四. 管狀傳輸區域。	24
圖 十五. 協同合作之目的地參考點示意圖。	26
圖 十六. 協同合作之最遠距離參考點示意圖。	28
圖 十七. 延遲公式示意圖。	29
圖 十八. 多個訊號疊加路徑示意圖。	30
圖 十九. 模擬場景。	32
圖 二十. 封包傳遞率與封包產生率之關係。	34
圖 二十一. 平均端點與端點的封包延遲時間與封包產生率之關係。	35
圖 二十二. 總電量消耗。	36
圖 二十三. 成功封包之平均電量消耗。	37
 
表目錄
表 一. 水下聲波網路與一般無線網路之比較	1
表 二. 系統架構表	20
表 三. 實驗模擬參數	33
參考文獻
[1] B. Liu, H. Chen, Z. Zhong, and H. V. Poor, “Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3532-3542, Nov. 2010.
[2] H. Daeyoup and K. Dongkyun, “DFR: Directional flooding-based routing protocol for underwater sensor networks,” in Proceedings of IEEE OCEANS, Sep. 2008.
[3] H. Doukkalip, L. Nuaymi, and S. Houcke, “Power and distance based MAC algorithms for underwater acoustic networks,” in Proceedings of IEEE OCEANS, Sep. 2006.
[4] J. Bauer, N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and P. Martini, “Optimizing ODMRP for underwater networks,” in Proceedings of IEEE Military Communications Conference, Oct. 2010.
[5] L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics, second edition, Springer, 1990.
[6] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, fourth edition, John Wiley & Sons Inc, 1999.
[7] M. T. Isik and O. B. Akan, “A three dimensional localization algorithm for underwater acoustic sensor networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4457-4463, Sep. 2009.
[8] N. Nicolaou, A. See, P. Xie, J. H. Cui, and D. Maggiorini, “Improving the robustness of location-based routing for underwater sensor networks,” in Proceedings of IEEE OCEANS, Jun. 2007.
[9] P. Xie, J. H. Cui, and L. Lao, “VBF: Vector-based forwarding protocol for underwater sensor networks,” in Proceedings of Networking, May 2006.
[10] Z. Han, Y. L. Sun, and H. Shi, “Cooperative transmission for underwater acoustic communications,” in Proceedings of IEEE International Conference on Communications, May 2008.
[11] Z. Zhou, Z. Peng, J. H. Cui, Z. Shi, and A. C. Bagtzoglou, “Scalable localization with mobility prediction for underwater sensor networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 3, pp. 335-348, Mar. 2011.
[12] H. Shan, W. Zhuang, and H. T. Chen, “Cross-layer protocol design for distributed wireless networks with novel relay selection,” in Proceedings of IEEE Global Telecommunications Conference, Dec. 2010.
[13] A. Argyriou, “Cross-layer and cooperative opportunistic network coding in wireless ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 803-812, Feb. 2010.
[14] H. Shan, W. Zhuang, and Z. Wang, “Cooperation or not in mobile ad hoc networks: a MAC perspective,” in Proceedings of IEEE International Conference on Communications, Jun. 2009.
[15] Y. Zou, B. Zheng, and W. P. Zhu, “An opportunistic cooperation scheme and its BER analysis,” IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4492-4497, Sep. 2009.
[16] H. Jin, X. Wang, H. Yu, Y. Xu, Y. Guan, and X. Gao, “C-MAC:A MAC protocol supporting cooperation in wireless LANs,” in Proceedings of IEEE Wireless Communications and Networking Conference, Apr. 2009.
[17] C. K. Lo, R. W. Heath, and S. Vishwanath, “The impact of channel feedback on opportunistic relay selection for hybrid-ARQ in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 3, pp. 1255-1268, Mar. 2009.
[18] H. Shan, W. Zhuang, and Z. Wang, “Distributed cooperative MAC for multihop wireless networks,” IEEE Communications Magazine, vol. 47, no. 2, pp. 126-133, Feb. 2009.
[19] S. S. Ikki and M. H. Ahmed, “Exact error probability and channel capacity of the best-relay cooperative-diversity networks,” IEEE Signal Processings Letters, vol. 16, no. 12, pp. 1051-1054, Dec. 2009.
[20] A. S. Ibrahim, A. K. Sadek, W. Su, and K. J. R. Liu, “Cooperative communications with relay-selection: when to cooperate and whom to cooperate with?,” IEEE Transactions on Wireless Communications, vol. 7, no. 7, pp. 2814-2827, Jul. 2008.
[21] T. Hu and Y. Fei, “Qelar: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks,” IEEE Transactions on Mo I. Tolstoy and C. S. Clay, Ocean Acoustics: Theory and Experiment in Underwater Sound, 1st ed. McGraw-Hill, 1987.
[22] M. Erol and S. Oktug, “A localization and routing framework for mobile underwater sensor networks,” in Proceedings of the IEEE INFOCOM, the Annual Joint Conference of the IEEE Computer and Communications Societies, Apr. 2008.
[23] U. Lee, P. Wang, Y. Noh, L. F. M. Vieira, M. Gerla, and J.-H. Cui,“Pressure routing for underwater sensor networks,” in Proceedings of the IEEE INFOCOM, Mar. 2010.
[24] D. Pompili, T. Melodia, and I. F. Akyildiz, “Routing algorithms fordelay-insensitive and delay-sensitive applications in underwater sensor networks,” in Proceedings of the ACM International  Conference on Mobile Computing and Networking, pp. 298-309, Sep. 2006.
[25] J. M. Jornet, M. Stojanovic, and M. Zorzi, “Focused beam routing protocol for underwater acoustic networks,” in Proceedings of the Annual International Conference on Mobile Computing and Networking, pp. 75-81, Sep. 2008.
[26] M. Vajapeyam, U. Mitra, J. Preisig, and M. Stojanovic, “Distributed Space-Time Cooperative Schemes for Underwater Acoustic Communications,” in Proceedings of IEEE OCEANS, May 2006.
[27] M. Vajapeyam and U. Mitra, “Performance of Distributed Space-Time Cooperative Schemes for Underwater Acoustic Communications,” in Proceedings of IEEE Global Telecommunications Conference, Nov. 2006.
[28] M. Vajapeyam, S. Vedantam, U. Mitra, J. Preisig, and M. Stojanovic,  “Distributed Space-Time Cooperative Schemes for Underwater Acoustic Communications,” IEEE Journal of Oceanic Engineering, vol. 33, no. 4, pp. 489-501, Oct. 2008.
[29] C.-L. Wang, T. Aguilar, V. Gauthier, and H. Afifi, “Cooperative Geographic Routing with Radio Coverage Extension for SER-Constrained Wireless Relay Networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 2, pp. 271-279, Feb. 2012.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信