淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1708201123171500
中文論文名稱 關聯式法則在主動脈瘤臨床病症上的應用 以主動脈內人工血管支架置放手術為例
英文論文名稱 Clinical Application of Association Rules for Endovascular Repair with Aortic Aneurysm
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 余博淵
研究生英文姓名 Po-Yuan Yu
學號 698410064
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2011-07-20
論文頁數 77頁
口試委員 指導教授-葛煥昭
委員-葛煥昭
委員-蕭瑞祥
委員-施俊哲
中文關鍵字 主動脈瘤  主動脈內人工血管支架放置術  覆膜支架  資料探勘  關聯式法則 
英文關鍵字 Aortic aneurysm  Endovascular repair  Endograft  Data mining  Association rules 
學科別分類 學科別應用科學資訊工程
中文摘要 本研究在主動脈瘤臨床病症上,利用資料探勘中的關聯式法則,分析主動脈瘤內人工血管支架置放手術在不同病患中,使用不同種類覆膜支架的影響。每位病患的病史不同會影響手術的結果,而所使用的覆膜支架又會因種類不同而在主支架與覆膜有相異的材質,還有在相異支架中,所附載的藥物也會相異,這些不同的因子都會影響到手術最後的結果;然而,臨床醫師在術前檢測病患資料時,往往都是利用自己本身的經驗法則去作出治療的判斷,判斷出病患適合使用哪種覆膜支架進行手術,所以本研究目的是利用關聯式法則分析出隱藏於病患資料中,臨床醫生未發現隱藏因子,找出不同的病患最適合使用的覆膜支架,以提高手術的成功機率,更進一步分析資料找出非必要之醫療檢測項目而減少醫療資源的浪費與病患的痛苦和負擔。
英文摘要 In this study, we will use association rule of data mining to analyze the different patients with endovascular aortic repair. Using different kind of endo-graft would cause different results of surgery on people who has different patient history. The different kinds of stents and graft which compose different kinds of materials and different kinds of drug-eluting would also affect on the final result of surgery. However, the clinician almost uses his experiences to diagnose treatment which kind of stent-graft is appropriated for the patient before surgery. So, we use data mining of association rule to analyze the patient`s data and find out hidden factors which isn`t attention for clinicians. Finally, if we could find out the endograft which is appropriate for the patient, the rate of successes of the operation would increase. Moreover, we could delete some detections which are unnecessary for decreasing to waste resource of medical and burden of patient.
論文目次 第一章 緒論......1
1.1 研究背景......1
1.2 研究動機與目的...... 2
1.3 論文架構......3
第二章 文獻探討......4
2.1 主動脈瘤簡介......4
2.2 主動脈瘤治療方法......7
2.2.1 傳統剖腹手術......7
2.2.2 主動脈內人工血管支架置放手術......8
2.3 支架介紹......10
2.3.1 早期的支架分類......10
2.3.2 覆膜支架......12
2.3.3 藥物塗層支架(Drug-eluting Stent)......13
2.3.4 目前上市的主動脈血管支架......14
2.4 資料探勘(Data Mining)......16
2.4.1 分類(Classification)......17
2.4.2 叢集(Clustering)......20
2.5 關聯式法則......22
2.5.1 Apriori演算法......23
2.5.2 Apriori演算法的改進......26
第三章 研究方法......31
3.1 研究流程......33
3.2 分析資料準備......38
第四章 實作分析......41
4.1 基本分析結果......42
4.2 WBC與Platelet關聯分析......45
4.3 WBC與FDP關聯分析......47
4.4 FDP與Platelet關聯分析......48
4.5 WBC + FDP + Platelet關聯分析......50
4.6 特殊規則分析......54
第五章 結論與未來研究方向......57
5.1 結論......57
5.2 未來研究方向......60
參考文獻......61
附錄-英文論文......67

圖目錄
圖2-1 主動脈區分圖......4
圖2-2 剝離型主動脈瘤分類法......6
圖2-3 傳統剖腹手術......7
圖2-4 人工血管支架放置流程圖......9
圖2-5 腹主動脈支架導管置入後......9
圖2-6 鎳鈦合金線圈型支架......10
圖2-7 Wright Z字形不繡鋼支架......11
圖2-8 Maass雙線圈型支架......11
圖2-9 氣球擴張型不繡鋼Palmaz支架......11
圖2-10 Excluder覆膜支架......12
圖2-11 Apriori演算法範例......25
圖3-1 研究流程圖......32
圖3-2 原始資料(具有不正確、遺漏、錯誤和空值)......34
圖3-3 資料轉換,將連續資料轉換成非連續性資料供關聯式法則演算法運算......35
圖3-4 資料探勘工具(IBM Intelligent Miner)......37
圖4-1 個別規則分析圖......43
圖4-2 WBC + Platelet關聯分析圖......46
圖4-3 WBC + FDP關聯分析圖......48
圖4-4 FDP + Platelet關聯分析圖......50
圖4-5 WBC + FDP +Platelet 關聯分析圖......53
圖4-6 特殊關聯分析圖......56

表目錄
表2-1 塗藥支架血管一覽表......14
表2-2 主動脈支架血管......15
表2-3 Hash Table......28
表3-1 欄位說明......38
表4-1 重要欄位表......41
表5-1 關聯法則分析結論......57
參考文獻 [1]Agrawal R., et al., "Mining association rules between sets of items in large databases," presented at the Proceedings of the 1993 ACM SIGMOD international conference on Management of data, Washington, D.C., United States, 1993.
[2]Agrawal R. and Srikant R., " Fast Algorithms for Mining Association Rules in Large Databases," in Proceedings of 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, 1994, pp. 487-499.
[3]Agrawal R. and Srikant R., "Mining sequential patterns," in Proceedings of the 11th International Conference on Data Engineering (ICDE'95), 1995 pp. 3-14.
[4]Barnes M., et al., "A Model to Predict Outcomes for Endovascular Aneurysm Repair Using Preoperative Variables," European Journal of Vascular and Endovascular Surgery. 2008; 35(5): 571-579.
[5]Breiman L., et al., Classification and regression trees. Belmont, California: Wadsworth 1984.
[6]Brin S., et al., "Dynamic itemset counting and implication rules for market basket data," presented at the Proceedings of the 1997 ACM SIGMOD international conference on Management of data, Tucson, Arizona, United States, 1997.
[7]Chang H.-K., "A New Method of Multi-Dimensional Sequential Rules Mining from Databases," Master, Department and Graduate Institute of Information Management, Chaoyang University of Technology, taichung, taipei, 2002.
[8]Cragg A., et al., "Nonsurgical placement of arterial endoprostheses: a new technique using nitinol wire," Radiology. April 1, 1983 1983; 147(1): 261-263.
[9]Davies R. R., et al., "Novel Measurement of Relative Aortic Size Predicts Rupture of Thoracic Aortic Aneurysms," The Annals of Thoracic Surgery. 2006; 81(1): 169-177.
[10]Davies R. R., et al., "Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size," The Annals of Thoracic Surgery. 2002; 73(1): 17-28.
[11]Fayyad U., et al., "The KDD process for extracting useful knowledge from volumes of data," Communication of ACM. 1996; 39 27-34.
[12]Fayyad U., et al., "from Data Mining to Knowledge Discovery in Database," AI Magzine. 1996; 17(3): 37-54.
[13]Greenhalgh R. M., "Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial," The Lancet. 2004; 364(9437): 843-848.
[14]Han J., et al., "Mining frequent patterns without candidate generation," presented at the Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Dallas, Texas, United States, 2000.
[15]Huang N.-C., "The Irrelevant Values Problem In The Decision Tree For Medical Examinations," Master, Department of CSIE, Tamkang University, Taipei county, 2007.
[16]Isselbacher E. M., "Thoracic and Abdominal Aortic Aneurysms," Circulation. February 15, 2005 2005; 111(6): 816-828.
[17]Jain A. K., et al., "Data clustering: a review," ACM Computing Surveys. 1999; 31(3): 264-323.
[18]Kohonen T., Self-Organization and Associative Memory, 3rd ed. NY: New York Inc, 1989.
[19]Kohonen T., "The self-organizing map," Proceedings of the IEEE. 1990; 78(9): 1464-1480.
[20]Kuo W.-J., et al., "Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images," Breast cancer research and treatment. 2001; 1 51-57.
[21]Maass D., et al., "Radiological Follow-Up of Transluminally Inserted Vascular Endoprostheses: An Experimental Study Using Expanding Spirals," Radiology. 1984; 152 659-663.
[22]Moore W. S., et al., "Abdominal Aortic Aneurysm:A 6-Year Comparison of Endovascular Versus Transabdominal Repair," Annals of Surgery. Sep 1999; 3): 298.
[23]Palmaz J. C., et al., "Expandable intraluminal graft: a preliminary study. Work in progress," Radiology. 1985; 156(1): 73-77.
[24]Park J. S., et al., "An effective hash-based algorithm for mining association rules," presented at the Proceedings of the 1995 ACM SIGMOD international conference on Management of data, San Jose, California, United States, 1995.
[25]Parodi J. C., et al., "Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms," Annals of Vascular Surgery. 1991; 5(6): 491-499.
[26]Rousseau H., et al., "Self-expanding endovascular prosthesis: an experimental study," Radiology. September 1, 1987 1987; 164(3): 709-714.
[27]Shih C. C., et al., "Growth inhibition of cultured smooth muscle cells by corrosion products of 316L stainless steel wire," Journal of Biomedical Materials Research. 2001; 57 200–207.
[28]Shih C.-C., et al., "The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells," Journal of Biomedical Materials Research. 2000; 52(2): 395-403.
[29]Sigwart U., et al., "Intravascular Stents to Prevent Occlusion and Restenosis after Transluminal Angioplasty," The New England Journal of Medicine. 1987; 316 701-706.
[30]Srikant R. and Agrawal R., "Mining sequential patterns: Generalizations and performance improvements," in Advances in Database Technology — EDBT '96. vol. 1057, P. Apers, et al., Eds., ed: Springer Berlin / Heidelberg, 1996, pp. 1-17.
[31]Subramaniam K. G. and Akhunji Z., "Drug eluting stent induced coronary artery aneurysm repair by exclusion. Where are we headed?," European Journal of Cardiothorac Surgery. 2009; 36 203-205.
[32]Toivonen H., "Sampling Large Databases for Association Rules," in Proceedings of 22th International Conference on Very Large Data Bases, Bombay, India, 1996, pp. 134-145.
[33]Wright K. C., et al., "Percutaneous endovascular stents: an experimental evaluation," Radiology. July 1, 1985 1985; 156(1): 69-72.
[34]丁一賢 and 陳牧言, 資料探勘. Taipei: 滄海書局, 2005.
[35]王亞莉, et al., "心血管置入後心管內皮損傷," 中國組織工程研究與臨床康復. 2009; 13(9): 4.
[36]台灣血管外科學會. (2011, 4th August). 台灣血管外科學會. http://www.tsvs.org/index.php
[37]行政院衛生署. (2011, 4th AUG). 行政院衛生署99年度10大死因統計. http://www.doh.gov.tw/CHT2006/DM/DM2_2_p02.aspx?class_no=440&now_fod_list_no=11897&level_no=3&doc_no=80725
[38]施俊哲, "胸、腹主動脈瘤微創治療新趨勢 -支架血管治療主動脈瘤-," 臨床醫學. 2007; 60 271-282.
[39]施俊哲, "血管支架簡介," 臨床醫學. 2008; 62 454-470.
[40]陳文華, "應用資料倉儲系統建立CRM," 資訊與電腦雜誌. 1999; 226 122-131.
[41]葉聰賜 and 施俊哲, "腹主動脈瘤血管內套膜支架目前的發展," 臨床醫學. 2006; 58 113-122.
[42]蔣定安, 資料庫基本理論與實作, 2nd ed.: 東華書局, 2004.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信