淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1708201117405400
中文論文名稱 DSP實現模糊動態觀測器應用於DC-DC轉換器之輸出電壓調節
英文論文名稱 DSP Implementation of Fuzzy Dynamic Observer For DC-DC Converter Output Voltage
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 王柏元
研究生英文姓名 Bo-Yuan Wang
學號 698470381
學位類別 碩士
語文別 英文
口試日期 2011-07-07
論文頁數 42頁
口試委員 指導教授-劉寅春
委員-邱謙松
委員-江東昇
中文關鍵字 線性矩陣不等式  直流對直流降壓型電源轉換器  dSPACE 1104  Takagi-Sugeno模糊模組 
英文關鍵字 DC-DC Buck Converter  DS1104  T-S Fuzzy Model  Linear Matrix Inequalities(LMIs) 
學科別分類 學科別應用科學電機及電子
中文摘要 本篇論文對於非線性系統與模糊系統引用LMI為基礎之精確已近似控制理論,並用已達成控制目標。首先,將非線性系統以數個具線性系統為後件部的模糊子系統作為表示,再融合所有子系統精確表示原先的非線性系統。針對此精確模糊受控系統,設計具相同前件部之模糊狀態迴授控制器,另用穩定性分析方法找出閉迴路系統穩定之充分條件,將充分條件轉換為 LMI 條件後,控制器達成目的所需之控制增益等等,可由電腦以數值模擬方式運算出結果。
為驗證所提出的控制方法,首先利用 Matlab 完成控制器在電壓穩定性的數據模擬。接著,用電子電路實做直流對直流降壓型電源轉換器,利用 dSPACE 1104 控制晶片以及 Matlab toolbox 實現 LMI為基礎的非線性控制器。時做結果也證明此控制理論確實能應用於降壓型電源轉換器的控制,並增加輸入變動以及負載變動實驗,證明此控制理論在不同狀態下仍能達到電壓穩壓之效果。
英文摘要 In this thesis, according LMI-based Control for Fuzzy and nonlinear systems to implement the DC-DC buck converter output voltage regulation. First, the nonlinear system is represented by several fuzzy subsystems where the consequent parts are linear dynamical systems. Then by blending these rules, we exactly represent the original nonlinear dynamical systems. Following the modeling stage, a fuzzy state feedback controller for each linear subsystem is designed with same variables as that of the fuzzy plant model representation. Using Lyapunov’s direct method, the stability analysis is carried out on the overall closed-loop system. The sufficient conditions arising from the stability analysis is then formulated into linear matrix inequalities.
We using MATLAB to simulate the LMI voltage output and then make electronic circuit DC-DC buck converter. In the end use DS1104 controller and MATLAB Simulink toolbox to achieve LMI-based controller, and the experiment result indicates LMI-based theory can implement into PWM DC-DC buck converter, and it can also can regulate the voltage on load changes or voltage changes situation
論文目次 Contents I
List of Figures II
List of Tables IV
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Mamdani fuzzy System . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 T-S fuzzy System . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Linear Martix Inequalities . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 LMI-based Control for Nonlinear Systems 6
2.1 Modeling of Nonlinear System . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Dynamic Output Feedback Controller . . . . . . . . . . . . . . . 9
2.1.3 Robust Output Tracking and Regulation . . . . . . . . . . . . . 20
I
3 Conventional PWM Buck Converter 24
3.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Modeling for PWM Buck Converter . . . . . . . . . . . . . . . . . . . . 26
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Experiment Results 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 DS1104 controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 DS1104 A/D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 DS1104 PWM signal . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 MOSFET gate drive circuit design . . . . . . . . . . . . . . . . 31
4.2.4 Implementation using DS1104 . . . . . . . . . . . . . . . . . . . 33
4.2.5 Experiment 1 : Change different voltage inputs . . . . . . . . . 33
4.2.6 Experiment 2 : Switch different Resistances . . . . . . . . . . . 36
5 Conclusions and future work 39
References 40
II
List of Figures
3.1 Conventional PWM buck converter circuit . . . . . . . . . . . . . . . . 24
3.2 PWM buck converter circuit when the switch is on . . . . . . . . . . . 25
3.3 PWM buck converter circuit when the switch is off . . . . . . . . . . . 25
4.1 DS1104 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 DS1104 experiment flow chart . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 DS1104 A/D figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 DS1104 PWM signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Resistor–Capacitor circuit . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Output iL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 error when the voltage at 20V . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 V of loading change from 6Ω to 16Ω at 20V . . . . . . . . . . . . . . . 36
4.10 Ampere of loading change from 6Ω to 16Ω at 20V . . . . . . . . . . . . 37
4.11 Error of loading change from 6Ω to 16Ω at 20V . . . . . . . . . . . . . 37
III
List of Tables
4.1 Parameter value of DC-DC PWM buck converter . . . . . . . . . . . . 38
IV
參考文獻 [1] K. Y. Lian, T. S. Chiang, P. Liu, and C. S. Chiu,“Synthesis of Fuzzy Model-based
Design to Synchronization and Secure Communication for Chaotic Systems,” IEEE
Trans. Syst., Man., and Cyber.: Part B, Vol. 31, No. 1, pp. 66-83, 2001
[2] W. C. Lin, “Fuzzy model based tracking control with Performance,” Master Thesis
of CYCU. 2001.
[3] C. Y. Huang,“T-S-Fuzzy Controller Design for DC-DC Power Converter,” Master
Thesis of CYCU. 2002.
[4] Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its applications
to modeling and control,” IEEE Trans. Syst., Man, Cybern. vol. 15, no. 1, pp.
116-132.
[5] J. L. Lin, and H. Y. Hsieh, “Dynamics Analysis and Controller Synthesis for Zero-
Voltage-Transition PWM Power Converters,” IEEE Transactions on Power Electronics,
vol. 15, no. 2, pp.205-214, 2000.
[6] B. P. Divakar, and A. Ioinovici, “PWM Converter with Low Stress and Zero Capacitive
Turn-On Losses,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 33, no. 3, pp.913-920, 1997.
[7] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Fuzzy Control of Dc-Dc Switching
Converters Based on TS-Modeling Approach,” IEEE Conf., pp.1052-1054, 1998.
[8] Chiang T.-S., Chiu C.-S., and Liu Peter, “Robust fuzzy integral regulator design
for a class of affine nonlinear systems,” IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences Vol. E89-A, No. 4, pp. 1100-1107.
[9] Chen B.-S., Tseng C.-S., and Uang H.-J. “Robustness of nonlinear dynamic systems
via fuzzy linear control,” IEEE Trans. on Fuzzy Syst. vol. 7, no. 5, pp. 571-585,
1999.
[10] Nguang S. K. and Shi P., “fuzzy output feedback control design for nonlinearsystems
An LMI approach,” IEEE Trans. on Fuzzy Syst. vol. 11, no. 3,, pp. 331-340,
2003.
[11] J. Park J. S. Kim and D. Park., “LMI-based design of stabilizing fuzzy controllers
for nonlinear systems described by Takagi-Sugeno fuzzy model,” IEEE
Trans. Fuzzy Syst., vol. 122, pp. 73-82, 2001
[12] F. S. Lin, “Integral Fuzzy Control and Application on Power Converter,” Master
Thesis of CYCU. 2003
[13] P. Liu, “Exact and Approximate LMI-Based Control for Fuzzy And Nonlinear
System,” Disseration of CYCU. 2002
[14] Zadeh, L.A., ”Fuzzy sets,“Information and Control,” 8(3), pp. 338-353, 1965.
[15] K. Tanaka, M. Sugeno, “Stability analysis and design of fuzzy control systems,”
Fuzzy Sets and Systems, Vol. 45, pp.135-156, 1992.
[16] K. Tanaka, M. Sano, “A robust stabilization problem of fuzzy control systems and
it’s application to backing up cintrol of a truck-trailer,” IEEE Trans. Fuzzy Syst.,
Vol. 2, pp. 119-134,1994.
[17] H.O. Wang, K. Tanaka, M.F. Griffin, “An approach to fuzzy control of nonlinear
systems: stability and design issues,” IEEE Trans. Fuzzy Syst Vol. 4, pp. 14-23,
1996.
[18] K. Tanaka, T. Kosaki, H.O.Wang, “Backing control problem of a mobile robot with
multiple trailers: fuzzy modeling and LMI-based design,” IEEE Trans. System,
Man, Cybern.,Vol. 283, pp. 329-337,1998.
[19] K.-Y. Lian, C.-S. Chiu, and P. Liu, “LMI-Based Fuzzy Chaotic Synchronization
and Communications,” IEEE Trans. Fuzzy Syst.,vol. 9, pp. 539-553, [2001c].
[21] L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-based PID and fuzzy
controllers for DC-DC converters,” IEEE trans. Ind. Electron., Vol. 56, No. 6, pp.
2237- 2248, Jun. 2009.
[22] W.-C. So, C. K. Tse, and Y.-S. Lee, “Development of a fuzzy logic controller
for dc–dc converters: Design, computer simulation, and experimental evaluation,”
IEEE Trans. Power Electron., vol. 11, no. 1, pp. 24–32, Jan. 1996.
[23] P. Mattavelli, L. Rossetto, G. Spiazzi, and P. Tenti, “General-purpose fuzzy controller
for dc–dc converters,” IEEE Trans. Power Electron., vol. 12, no. 1, pp.
79–86, Jan. 1997.
[24] S. Buso and P. Mattavelli, “Digital Control in Power Electronics,” Morgan and
Claypool Publishers, 2006.
[25] Y.-F. Liu, E. Meyer, and X. Liu, “Recent developments in digital control strategies
for DC/DC switching power converters,” IEEE Trans. on Power Electron., Vol. 24,
No. 11, pp. 2567-2577, Nov. 2009
[26] Y. Shi and P. C. Sen, “Application of variable structure fuzzy logiccontroller for
dc–dc converters,” in Proc. 27th Annu. Conf. IEEE Ind.Electron. Soc., Denver,
CO, Nov. 29–Dec. 2, 2001, vol. 3, pp. 2026–2031.
[27] A. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang, and M. Morari, “Explicit model
predictive control of DC-DC switched mode powersupplies with extended Kalman
filtering,” IEEE Trans. Ind. Electron.,vol. 56, no. 3, pp. 1864–1874, Jun. 2009.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-08-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信