淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1708201115321400
中文論文名稱 中空纖維模組於薄膜氣體吸收系統的解析解與實驗之研究
英文論文名稱 Analytical and Experimental Studies of Laminar Flow Gas Absorption through a Hollow Fiber Module
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 宋昀臻
研究生英文姓名 Yun-Jen Sung
學號 697400611
學位類別 碩士
語文別 中文
口試日期 2011-07-21
論文頁數 100頁
口試委員 指導教授-何啟東
委員-萬文彬
委員-張煖
中文關鍵字 薄膜氣體吸收  共軛格拉茲  質量傳送  中空纖維模組  解析解 
英文關鍵字 Membrane gas absorption  Conjugated Graetz problem  Mass Transfer  Hollow fiber membrane module  Analytical solution 
學科別分類
中文摘要 本研究主要是探討以中空纖維模組應用在薄膜氣體吸收系統之解析解與實驗之驗證。針對中空纖維模組的部份,導入Happel’s free surface模式,以建立其速度分佈式及邊界條件。而在薄膜氣體吸收系統中,氣體溶質於氣、液兩相內之質傳屬於共軛格拉茲問題,利用正交性質展開法建立二維濃度分佈式,並配合分離變數法及級數展開可求得系統之解析解。研究中也進一步推導出氣體溶質在氣-液薄膜接觸器內,於氣、液兩相中之平均濃度分佈、質傳係數、吸收速率及吸收效率等物理量之數學表示式。
以本文所推導之理論為基礎,改變氣、液兩相之進料流量與混合氣體進料的濃度,對二氧化碳之物理吸收作廣泛的討論,並以實驗結果印證理論分析之準確性。
本研究之主要價值在於無需經過冗長費時的實驗即可求得整個吸收系統之質傳係數及氣體溶質的二維濃度分佈式,進一步可討論各種變因對吸收效率的影響。
英文摘要 The effects on solute mass transfer for a laminar gas absorption process were investigated theoretically and experimentally in this study. A mathematical formulation was developed in a hollow fiber gas-liquid membrane contactor that independently regulates gas and liquid flows. The analytical solution for such a conjugated Graetz problem is obtained by using the separated variable method with an orthogonal expansion technique extended in power series. Physical carbon dioxide absorption in water was studied.
The theoretical predictions show that a higher absorbent flow rate has a positive effect producing better absorption efficiency in the case when the CO2 concentration in gas feed is specified. The absorption efficiency in the countercurrent-flow device is better than that in the concurrent-flow device in the same operating conditions. The experiments of hollow fiber module are set up to confirm the accuracy of the theoretical results.
論文目次 目 錄
中文摘要 ...................................................................................................... II
英文摘要 ..................................................................................................... III
目錄 ............................................................................................................. IV
圖目錄. ...................................................................................................... VII
表目錄 ......................................................................................................... IX
符號說明 ...................................................................................................... X
第一章 緒論 ................................................................................................. 1
1-1 簡介 ............................................................................................. 1
1-1-1薄膜氣體吸收 ........................................................................... 1
1-1-2 格拉茲問題(Graetz problems) ................................................. 3
1-2 研究動機、目的與方向 ............................................................. 4
第二章 文獻回顧 ......................................................................................... 6
2-1 格拉茲問題(Graetz problems) .................................................... 6
2-2薄膜氣體吸收之研究 .................................................................. 7
第三章 中空纖維型順流式氣-液薄膜接觸器 ......................................... 10
3-1 基本理論 ................................................................................... 10
3-2 平均濃度與質傳係數 ............................................................... 18
3-3 吸收速率與吸收效率 ............................................................... 19

3-4 計算範例、結果與討論 ........................................................... 20
第四章 中空纖維型逆流式氣-液薄膜接觸器 ......................................... 30
4-1 基本理論 ................................................................................... 30
4-2 平均濃度與質傳係數 ............................................................... 35
4-3 吸收速率與吸收效率 ............................................................... 37
4-4 計算範例、結果與討論 ........................................................... 37
第五章 薄膜吸收實驗 ............................................................................... 48
5-1 實驗設備 ................................................................................... 48
5-2 實驗流程 ................................................................................... 49
5-3 結果與討論 ............................................................................... 51
第六章 結論 ............................................................................................... 60
參考文獻 ..................................................................................................... 63
附錄A 套管型氣-液薄膜接觸器 .............................................................. 70
附錄B 正交性質證明 ............................................................................... 76
附錄C 積分公式證明 ............................................................................... 80
C-1 中空纖維模組順流系統積分公式 .......................................... 81
C-2 中空纖維模組逆流系統積分公式 .......................................... 84
附錄D 展開係數求解過程 ....................................................................... 86
D-1 中空纖維模組順流展開系數 .................................................. 92
D-2 中空纖維模組逆流展開系數 .................................................. 95
附錄E 平均濃度 ....................................................................................... 98
E-1中空纖維模組順流系統平均濃度 ............................................ 99
E-2 中空纖維模組逆流系統平均濃度 ......................................... 100

圖 目 錄
圖3.1 空纖維型順流式氣-液薄膜接觸器。 ........................................... 23
圖3.2 在薄膜接觸器內不同位置,CO2於氣、液兩相中之濃度分佈圖。( Gza = 0.0941,Gzb = 400 ) ........................................................... 24
圖3.3 中空纖維型-順流式薄膜接觸器於不同Gza下,CO2於氣、液 兩相中之平均濃度變化情形。 ( Gza = 0.0627 ) ............................. 25
圖3.4 局部謝塢數於中空纖維型-順流式薄膜接觸器中之變化情形。 ( Gza = 0.0627 ) ............................................................................... 26
圖3.5 於不同Gza下,平均謝塢數與Gzb之關係。 .............................. 27
圖3.6 不同Gza下,Gzb與吸收效率之關係。 ....................................... 28
圖4.1 中空纖維型逆流式氣-液薄膜接觸器。 ....................................... 39
圖4.2 在薄膜接觸器內不同位置,CO2於氣、液兩相中之濃度分佈圖。 ( Gza = 0.0627,Gzb = 400 ) ........................................................... 40
圖4.3中空纖維型-逆流式薄膜接觸器於不同bGz下,CO2於氣、液兩相中之平均濃度變化情形。 ( Gza = 0.0627 ) ................................. 41
圖4.4 局部謝塢數於中空纖維型-逆流式薄膜接觸器中之變化情形。( Gza = 0.0627 ) ............................................................................... 42
圖4.5 於不同之Gza下,順流系統與逆流系統之平均謝塢數與液相流
率之關係。 ..................................................................................... 43

圖4.6 於不同之Gza下,順流系統與逆流系統之吸收效率與bGz之關係。 ................................................................................................. 44
圖5.1 中空纖維型順流式薄膜氣體吸收實驗裝置圖 ............................. 53
圖5.2 中空纖維模組順流系統中,理論與實驗之液相出口平均濃度與液相流率之關係。 ......................................................................... 54
圖5.3 中空纖維模組順流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係。 ( Qa = 3 cm3/s ).............................................. 55
圖5.4 中空纖維型逆流式薄膜氣體吸收實驗裝置圖 ............................. 56
圖5.5中空纖維模組順流與逆流系統中,理論與實驗之液相出口平均濃度與液相流率之關係。 ( Qa = 3 cm3/s ) ..................................... 57
圖5.6 中空纖維模組逆流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係。 ( Qa = 2 cm3/s ).............................................. 58
圖6.1 中空纖維型薄膜氣-液接觸器內,氣體溶質於氣、液兩相中的無因次濃度分佈求解流程圖。......................................................... 61
圖A.1 套管型氣-液薄膜接觸器。........................................................... 70
圖A.2套管型薄膜氣-液接觸器內,氣體溶質於氣、液兩相中的無因次濃度分佈求解流程圖。 ................................................................. 73

表 目 錄
表3.1 中空纖維型順流式氣-液薄膜接觸器特徵值數目對無因次平均出口濃度之比較。( Qa = 3 cm3/s,Qb = 6 cm3/s ) ..................... 29
表4.1 中空纖維型順流式氣-液薄膜接觸器特徵值數目對無因次平均出口濃度之比較。( Qa = 2 cm3/s,Qb = 8 cm3/s ) ..................... 45
表4.2 中空纖維順流系統於不同氣、液流率下之特徵值。 .............. 46
表4.3 中空纖維逆流系統於不同氣、液流率下之特徵值。 .............. 46
表4.4 不同氣、液流率下,中空纖維模組順流系統與逆流系吸收效效率之比較。 .................................................................................. 47
表5.1 實驗值與理論值之平均誤差 ...................................................... 59
參考文獻 1. 萬文彬,薄膜氣體吸收系統的解析解與實驗之研究,國立中央大學化學工程與材料工程研究所,(2006)
2. G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6 (1960) 179.
3. T. L. Perelman, On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer, 3 (1961) 293.
4. A. P. Hatton and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in an Annulus, Int. J. Heat Mass Transfer, 5 (1962) 973.
5. R. J. Nunge and W. N. Gill, Analysis of Heat or Mass Transfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer, 8 (1965) 873.
6. R. J. Nunge and W. N. Gill, An Analytical Study of Laminar Counterflow Double-Pipe Heat Exchangers. AIChE J., 12 (1966) 279.
7. C. J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, AIChE J., 11 (1965) 690.
8. E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51 (1973) 562.
9. H. M. Yeh, T.W. Chang and S. W. Tsai, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Separation Science and Technology, 21 (1986) 403.
10. M. A. Ebadian and H. Y. Zhang, An Exact Solution of Extend Graetz
64
Problem with Axial Heat Conduction, Int. J. Heat Mass Transfer, 32 (1989) 1709.
11. X. Yin and H. H. Bau, The Conjugated Graetz Problem with Axial Conduction, Journal of Heat Transfer, 118 (1996) 428.
12. C. D. Ho, H. M. Yeh and W. S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer, 44 (1998) 2589.
13. C. D. Ho and W. Y. Yang, Heat transfer of conjugated Graetz problems with laminar counterflow in double-pass concentric circular heat exchangers, Int. J. Heat Mass Transfer, 48 (2005) 4474.
14. R. O. C. Guedes and M. N. Ozisik, Conjugated Turbulent Heat Transfer with Axial Condition in Wall and Convection Boundary Conditions in a Parallel-Plate Channel, Int. J. Heat and Fluid Flow, 13 (1992) 322.
15. E. J. Davis and S. Venkatesh, The Solution of Conjugated Multiphase Heat and Mass Transfer Problems, Chem. Eng. Sci., 34 (1978) 775.
16. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-I General Formalism and a Class of Solid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1381.
17. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-II Fluid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1393.
18. M. R. Doshi, P. M. Daiya and W. N. Gill, Three Dimensional Laminar Dispersion in Open and Close Rectangular Conduits, Chem. Eng. Sci., 33 (1978) 795.
19. C. W. Tan and C. J. Hsu, Low Peclet Number Mass Transfer in Laminar Flow Through Circular Tubes, Int. J. Heat Mass Transfer, 15
65
(1972) 2187.
20. A. Pozzi and M. Lupo, The Coupling of Conduction with Forced Convection in Graetz Problems, Journal of Heat Transfer, 112 (1990) 1535.
21. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membrane Sci., 23 (1985) 321.
22. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membrane Sci., 23 (1985) 333.
23. M. C. Yang and E. L. Cussler, Designing Hollow-Fiber Contactors, AIChE J., 32 (1986) 1910.
24. D. O. Cooney and C. C. Jackson, Gas Absorption in a Hollow Fiber Device, Chem. Eng. Comm., 79 (1989) 153.
25. H. Kreulen, G. F. Versteeg, C. A. Smolders and W. P. M. van Swaaij, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, J. Membrane Sci., 73 (1992) 293.
26. M. J. Costello, A. G. Fane, P. A. Hogan and R. W. Schofield, The Effect of Shell Side Hydrodynamics on the Performance of Axial Flow Hollow Fiber Modules, J. Membrane Sci., 80 (1993) 1.
27. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membrane Sci.,
66
78 (1993) 197.
28. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membrane Sci., 78 (1993) 217.
29. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48 (1993) 2093.
30. S. Karoor and K. K. Sirkar, Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules, Ind. Eng. Chem. Res., 32 (1993) 674.
31. H. A. Rangwala, Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactor, J. Membrane Sci., 112 (1996) 229.
32. H. Chen, A. S. Kovvali, S. Majumdar and K. K. Sirkar, Selective CO2 Separation from CO2-N2 Mixtures by Immobilized Carbonate-Glycerol Membrane, Ind. Eng. Chem. Res., 38 (1999) 3489.
33. Y. S. Kim and S. M. Yang, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Absorbent, Separation and Purification Technology, 21 (2000) 101.
34. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park and K. H. Lee, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membrane Sci., 194 (2001) 57.
35. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg, Membrane-Solvent Selection for CO2 Removal Using Membrane Gas-Liquid Contactors, Separation and Purification Technology, 40
67
(2004) 133.
36. V. Y. Dindore, D. W. F. Brilman, P. H. M. Feron and G. F. Versteeg, CO2 Absorption at Elevated Pressures Using a Hollow Fiber Membrane Contactor, J. Membrane Sci., 235 (2004) 99.
37. S. Nii and H. Takeuchi, Gas Absorption with Membrane Permeation-Acid Gas Removal from Flue Gases by a Permabsorption Method, Trans IChemE., 72 (1994) 21.
38. P. H. M. Feron and A. E. Jansen, Capture of Carbon Dioxide Using Membrane Gas Absorption and Reuse in the Horticultural Industry, Energy Convers. Mgmt, 36 (1995) 411.
39. S. Bhaumik, S. Majumdar and K. K. Sirkar, Hollow-Fiber Membrane-Based Rapid Pressure Swing Absorption, AIChE J., 42 (1996) 409.
40. P. H. M. Feron and A. E. Jansen, The Production of Carbon Dioxide from Flue Gas by Membrane Gas Absorption, Energy Convers. Mgmt., 38 (1997) S93.
41. M. S. Chun and K. H. Lee, Analysis on a Hydrophobic Hollow-Fiber Membrane Absorber and Experimental Observations of CO2 Removal by Enhanced Absorption, Separation Science and Technology, 32 (1997) 2445.
42. K. Li and W. K. Teo, Use of Permeation and Absorption Methods for CO2 Removal in Hollow Fiber Membrane Modules, Separation and Purification Technology, 13 (1998) 79.
43. D. Bhaumik, S. Majumdar and K. K. Sirkar, Absorption of CO2 in a Transverse Flow Hollow Fiber Membrane Module Having a Few Wraps
68
of the Fiber Mat, J. Membrane Sci., 138 (1998) 77.
44. A. Gabelman and S. T. Hwang, Hollow Fiber Membrane Contactor, J. Membrane Sci., 159 (1999) 61.
45. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57 (2002) 1639.
46. M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, Reduction of CO2 Emissions by a Membrane Contacting Process, Fuel, 82 (2003) 2153.
47. S. S. Kim ans D. O. Cooney, An Improved Theoretical Model for Hollow-Fiber Enzyme Reactors, , Chem. Eng. Sci., 31 (1976) 289.
48. J. E. Vivian and C. J. King, Diffusivities of Slightly Soluble Gases in Water, AIChE J., 10 (1964) 220.
49. J. Happle, Viscous Flow Relative to Arrays of Cylinder, AIChE J., 5 (1959) 174.
50. E. M. Sparrow and A. L. Loeffler, Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array, AIChE J., 5 (1959) 325.
51. P. V. Danckwerts, Gas-Liquid Reactions, New York, McGraw-Hill, 1970.
52. G. F. Versteeg and W. P. M. van Swaaij, Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data, 33 (1988) 29.
53. R. E. Walker and A. A. Westenberg, Molecular Diffusion Studies in Gases at High Temperature. I. The “Point Source” Technique, J. chem. phys., 29 (1958) 1139.
54. V. D. Dang and M. Steinberg, Convective Diffusion with Homogeneous
69
and Heterogeneous Reactions in a Tube, J. Phys. Chem., 84 (1980) 214.
55. C. D. Ho, H. M. Yeh and R. C. Wang, Heat-transfer Enhancement in Double-Pass Flat-Plate Solar Air Heaters with Recycle, Energy, 30 (2005) 2796.
56. H. M. Yeh, C. D. Ho and J. Z. Hou, Collector efficiency of double-flow solar air heaters with fins attached, Energy, 27 (2002) 715.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信