淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1708201014213200
中文論文名稱 含奈米二氧化矽膠態電解質製備用於染料敏化太陽能電池之研究
英文論文名稱 The study of gel-state electrolyte containing SiO2 nanoparticles for the preparation to the dye sensitized solar cells
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 鍾岱麟
研究生英文姓名 Tai-Lin Chung
學號 697401171
學位類別 碩士
語文別 中文
口試日期 2010-07-22
論文頁數 83頁
口試委員 指導教授-張正良
共同指導教授-張朝欽
委員-段葉芳
委員-王文竹
委員-張正良
委員-張朝欽
委員-游洋雁
中文關鍵字 染敏太陽能電池  膠態電解質  二氧化矽  聚氧化乙烯 
英文關鍵字 Dye-sensitized solar cells  Electrolyte  SiO2 nanoparticle  polyethylene oxide 
學科別分類
中文摘要 近年來,對染料敏化太陽能電池之電解質的研究焦點集中在利用高分子聚合物或無機奈米粒子,以摻混的方式來改善液態電解質易揮發、外漏和封裝的缺陷,使提高長期使用上的穩定性。本研究中,分成兩種不同膠態電解質系統,一為將具有半結晶性的高分子聚氧化乙烯單獨加入液態電解質的系統中,形成膠態電解質,觀察高分子聚氧化乙烯對電解質的流變、導電度、離子擴散係數和光電轉換效率的影響;二為將高分子聚氧化乙烯與二氧化矽奈米粒子,以摻混的方式加入液態電解質的系統中,觀察二氧化矽奈米粒子對電解質的導電度、離子擴散係數和光電轉換效率的影響,並探討不同粒徑大小的二氧化矽奈米粒子所造成的影響。
研究結果發現在高分子聚氧化乙烯電解質系統中,隨著高分子的含量增加其黏度隨之增高,而導電度、離子擴散係數和光電轉換效率則是隨之降低,其原因為黏度的提高會影響電解質離子的移動性。而在高分子聚氧化乙烯電解質系統中摻混二氧化矽奈米粒子,依據導電性質、離子擴散係數和光電轉換效率分析結果可以發現,在含量為2 wt%二氧化矽奈米粒子可獲得最高之導電度、離子擴散系數和光電轉換效率,當含量增加至3 wt%以上時,導電度和離子擴散係數皆有降低的趨勢,其原因為二氧化矽奈米粒子添加過量產生聚集而沉澱,阻礙離子的移動。比較不同粒徑二氧化矽奈米粒子,結果發現皆能提高光電轉換效率,且效率差異不大,其原因為不同粒徑的二氧化矽奈米粒子在甲氧基丙腈溶劑中皆會聚集成較大顆的粒子。
英文摘要 In recent years, research of electrolyte in dye-sensitized solar cell focuses on blending polymers or inorganic nanoparticles in to overcome the problems of volatility, leakage and packaging, and pursue higher long-term stability. In this study, polyethylene oxide (PEO) and silica (SiO2) were incorporated in liquid electrolyte to form gel electrolyte, the resulting conductivity and ion diffusion coefficient of the electrolyte and the conversion efficiency of the assembled cell were observed, and the effect of particle size of silica nanoparticles on the performance was studied.
The results showed that the viscosity of PEO electrolyte system increased with increasing polymer content, while the conductivity, ion diffusion coefficient and the conversion efficiency decreased by reason of the viscosity increasing would affect the ion mobility. In the hybrid PEO and SiO2 electrolyte system, the best performance in conductivity, ion diffusion coefficient and the conversion efficiency could be obtained when 2 wt% of silica nanoparticles was added. When the silica content increased to more than 3 wt%, both the conductivity and diffusion coefficient were reduced. The reason for the reduction could be that the excessive silica nanoparticles aggregated and obstructed ion movement. Comparison of the results of silica nanoparticles with different sizes was made. Although the efficiencies were enhanced in both cases, no significant difference could be found which could be attributed to the aggregation of silica nanoparticles with different sizes in 3-methoxypropionitrile (MPN) solvent to form larger particles with similar sizes.
論文目次 中文摘要 I
英文摘要 II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1-1前言 1
1-2染料敏化太陽能電池概述 2
1-3研究目的 5
第二章 文獻回顧 6
2-1 染料敏化太陽能電池的電解質 6
2-2 離子液體電解質 8
2-3膠態電解質 11
2-3-1 聚合物型電解質 11
2-3-2 離子液體/無機奈米粒子型電解質 20
2-3-3有機高分子/無機奈米粒子複合膠態電解質 25
第三章 實驗設備與方法 27
3-1實驗藥品 27
3-2實驗步驟 31
3-2-1製備TiO2膜 31
3-2-2製備電極、電解質及元件組裝 32
3-3實驗儀器 34
3-4量測原理 36
3-4-2交流導電度量測 38
3-4-3電池光電轉換效率分析 39
第四章 實驗結果與討論 41
4-1工作電極分析與效率量測 41
4-1-1 TiO2工作電極表面分析 41
4-1-2 TiO2工作電極量測 47
4-2 液態電解質分析與效率量測 50
4-2-1含PMII離子液體的液態電解質效率量測 50
4-2-2 不同溶劑的液態電解質效率量測 52
4-3 高分子PEO膠態電解質電性分析與效率量測 54
4-3-1不同比例高分子PEO膠態電解質流變性質分析 54
4-3-2 不同比例高分子PEO膠態電解質導電性質分析 57
4-3-3 不同比例高分子PEO膠態電解質離子擴散係數 59
4-3-4 不同比例高分子PEO膠態電解質的光電轉換效率量測 62
4-4添加奈米二氧化矽的高分子膠態電解質電性分析與效率量測64
4-4-1奈米二氧化矽高分子膠態電解質之導電性質分析 64
4-4-2奈米二氧化矽高分子膠態電解質之擴散係數 67
4-4-3奈米二氧化矽高分子膠態電解質之效率量測 72
4-5 電池長期效率穩定度量測 75
第五章 結論 77
參考文獻 79
表目錄
表2-1不同有機溶劑的液態電解質對電池的影響 7
表2-2雙離子液體電解質電池效能與電性分析相關數據 10
表2-3導電度和電池效率相關數據圖 13
表2-4液態與高分子電解質之光電特性分析 14
表2-5液態與高分子電解質的光電特性分析 16
表2-6膠態電解質與含奈米粒子膠態電解質之光電特性分析 26
表4-1 TiO2膜厚量測 47
表4-2以AN和MPN為液態電解質不同TiO2厚度的電池效能表現 49
表4-3不含PMII離子液體的電池效能表現 51
表4-4 0.6 M PMII離子液體的電池效能表現 51
表4-5不同溶劑液態電解質的電池效能表現 53
表4-6不同比例PEO添加於液電解質中其導電性質分析數據 58
表4-7不同PEO比例添加到液態電解質的離子擴散係數 61
表4-8不同PEO比例添加到液態電解質中之電池效能表現 63
表4-9不同Aerosiil300比例添加到膠態電解質之導電性質分析數據66
表4-10不同Aerosiilox50比例添加到膠態電解質之導電性質分析數據66
表4-11不同Aerosil 300含量其離子擴散係數 69
表4-12不同Aerosil ox50含量其離子擴散係數 71
表4-13不同Aerosil 300含量之電池效能表現 73
表4-14不同Aerosil ox50含量之電池效能表現 74
圖目錄
圖1- 1染敏太陽能電池完整電子迴路圖 4
圖1- 2染敏太陽能電池中的電子再結合機制圖 5
圖2- 1整齊排列的液晶相離子液體結構示意圖 10
圖2- 2不同PEO/PPG比例電解質的WAXS光譜 12
圖2- 3電解質滲透到TiO2層的SEM圖 12
圖2- 4不同末端基的寡聚物結構圖 13
圖2- 5液態與膠態電解質穩定性比較圖 14
圖2- 6高分子薄膜的表面型態(a)PVDF(b)PEO(c)PVDF/PEO=4:6 16
圖2- 7液態與膠態電解質的效率穩定度圖 17
圖2- 8 TPGE在不同溫度下電壓、電流、效率的變化 17
圖2- 9液態與膠態電解質穩定性比較圖 19
圖2- 10液態與膠態電解質的電流電壓圖 20
圖2- 11電解質中添加二氧化矽構想圖 21
圖2- 12不同含量SiO2的電解質其電性分析圖 22
圖2- 13添加二氧化矽與未添加穩定度圖 22
圖2- 14 TiO2表面修飾不同長度的咪唑烷基 23
圖2- 15 TiO2修飾後(A)修飾前(B)的離子傳遞示意圖 23
圖2- 16二氧化矽表面活化(1)接枝上ATPS(2) 24
圖2- 17尾端接上不同長度的烷基碘化物 24
圖2- 18 I^-/I_3^-氧化還原對在TiO2表面的傳遞機制 26
圖3- 1製備TiO2工作電極流程圖 32
圖3- 2電池元件組裝流程示意圖 33
圖3- 3穩定態電流量測系統示意圖 37
圖3- 4穩定態電流電壓曲線圖 37
圖3- 5導電度量測示意圖 38
圖3- 6電流-電壓曲線圖 39
圖3- 7光電轉換效率量測系統示意圖 40
圖4- 1 P25高溫燒結前後的XRD圖 41
圖4- 2未添加PEG的TiO2工作電極表面 42
圖4- 3 10 wt%PEG的TiO2工作電極表面 43
圖4- 4 20 wt%PEG的TiO2工作電極表面 43
圖4- 5 30 wt%PEG的TiO2工作電極表面 44
圖4- 6未含PEG的TiO2工作電極表面上的孔洞 45
圖4- 7 10 wt%PEG的TiO2工作電極表面上的孔洞 45
圖4- 8 20 wt%PEG的TiO2工作電極表面上的孔洞 46
圖4- 9 30 wt%PEG的TiO2工作電極表面上的孔洞 46
圖4- 10 AN液態電解質的電流電壓圖 48
圖4- 11液態電解的電流電壓圖 50
圖4- 12不同溶劑液態電解質的電流電壓圖 53
圖4- 13不同比例PEO電解質其常溫下流變性質分析圖 55
圖4- 14不同比例PEO其流動情況 56
圖4- 15不同比例PEO其導電度變化圖 58
圖4- 16電解質之穩定態伏安曲線圖 59
圖4- 17電解質中離子擴散係數的關係圖 60
圖4- 18不同PEO比例膠態電解質之電流電壓圖 62
圖4- 19不同Aerosiil 300含量之導電度變化圖 65
圖4- 20不同Aerosiil ox50含量之導電度變化圖 66
圖4- 21含Aerosil 300之穩定態伏安曲線圖 67
圖4- 22含Aerosil ox50之穩定態伏安曲線圖 68
圖4- 23不同Aerosil 300含量之離子擴散係數圖 69
圖4- 24不同Aerosil ox50含量之離子擴散係數圖 70
圖4- 25不同Aerosiil 300含量之電流電壓圖 73
圖4- 26不同Aerosiil ox50含量之電流電壓圖 74
圖4- 27不同比例PEO膠態電解質電池效率穩定圖 75
圖4- 28不同比例Aerosil 300 含量的電池效率穩定圖 76
圖4- 29不同比例Aerosil ox50 含量的電池效率穩定圖 76


參考文獻 [1]沈輝、曾祖勤和馬振基,“太陽能光電技術-第二章”,五南圖書出版社,2008
[2] B. O’Regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, 1991, 737-740.
[3] M. Grätzel, "Photoelectrochemical cells", Nature, 2001, 414, 338-344.
[4] M. Grätzel, "Dye-sensitized solar cells", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 145-153.
[5] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel , M. K. Nazeeruddin, M. Grätzel,"Fabrication of thin film dye sensitized solar cells with solar to
electric power conversion efficiency over 10%", Thin Solid films, 2008, 516, 4613-4619.
[6]李陸玲、陳建仲和刁維光,「染料敏化太陽能電池的基本原理與元件最佳化策略研究」,化工期刊,2009,第56卷第2期,3-15
[7] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple ", Journal of Physical Chemistry B, 2005, 109, 3480-3487.
[8] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel , "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers", Journal of the American Chemical Society, 2005, 127, 16835-16847.
[9] A. Fukui, R. Komiya, R. Yamanaka, A. Islam, L. Han, "Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell", Solar Energy Materials and Solar Cells,2006,90,649-658.
[10]崔孟晉, 「染料敏化太陽電池電解質材料近況發展」,工業材料雜誌,2008,257期,184-193
[11] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3–14.
[12] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, "Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator", Chemical Communications. , 2002, 374–375.
[13] P. Wang, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel, "A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells", Journal of Physical Chemistry B, 2003, 107, 13280-13285
[14] P. Wang, B. Wenger, H.-B. Robin, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Grätzel, "Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids", Journal of the American Chemical Society, 2005, 127, 6850-6856
[15] H.-R. Jhong, D. S.-H. Wong, C.-C. Wan, Y.-Y. Wang, T.-C.Wei, "A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells", Electrochemistry Communications, 2009, 11, 209–211
[16]K.-M. Lee, P.-Y. Chen, C.-P. Lee, K.-C. Ho, " Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells", Journal of Power Sources, 2009, 190, 573–577
[17] N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida, "Dye-Sensitized TiO2 Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes", Journal of Physical Chemistry B, 2007, 111, 4763-4769
[18] M. S. Kang, J. H. Kim, Y. J. Kim, J. Won, N. G. Park, Y. S. Kang, "Dye-sensitized solar cells based on composite solid polymer electrolytes", Chemical Communications, 2005, 889–891
[19] J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, N. G. Park, Y. S. Kang, "Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles", Chemical Communications, 2004 ,1662–1663.
[20] Y. J. Kim, J. H. Kim, M.-S. Kang, M. J. Lee, J. Won, J. Chan Lee, Y. S. Kang, "Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Soalr Cells", Advanced Materials., 2004, 16, 1753-1757.
[21] M.-S. Kang, Y. J. Kim, J. Won, Y. S. Kang, "Roles of terminal groups of oligomer electrolytes in determining photovoltaic performances of dye-sensitized solar cells", Chemical Communications, 2005, 2686–2688.
[22] J. Xia, F. Li, C. Huang, J. Zhai, L. Jiang, "Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes", Solar Energy Materials and Solar Cells, 2006, 90, 944–952.
[23]H. Han, W. Liu, J. Zhang, X.-Z. Zhao, "A hybrid Poly(ethylene oxide)/Poly(vinylidene fluorie)/TiO2 nanoparticle solid-state redox electrolytye for dye-sensitized nanocrystalline solar cells", Advanced Functional Materials, 2005, 15, 1940–1944.
[24] J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fang, S. Yin, T. Sato, "A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells", Advanced Functional Materials, 2007, 17, 2645–2652.



[25] V. Suryanarayanan, K. M. Lee, W. H. Ho, H. C. Chen, K. C. Ho, "A comparative study of gel polymer electrolytes based on PVDF-HFP and liquid electrolytes, containing imidazolinium ionic liquids of different carbon chain lengths in DSSCs", Solar Energy Materials and Solar Cells, 2007, 91, 1467–1471.
[26] D.Saikia, C.C. Han, Y.W. Chen-Yang, "Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with (VdF-HFP)-based gel polymer electrolyte", Journal of Power Sources, 2008, 185, 570–576.
[27] A. R. Sathiya Priya, A. Subramania, Y. S. Jung, K. J. Kim, "High-Performance Quasi-Solid-State Dye-Sensitized Solar Cell Based on an Electrospun PVdF-HFP Membrane Electrolyte", Langmuir, 2008, 24, 9816-9819.
[28] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, "Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells", Journal of the American Chemical Society, 2003, 125, 1166-1167.
[29] M. Berginc, M. Hočevar, U. Opara Krašovec, A. Hinsch, R. Sastrawan, M. Topič, "Ionic liquid-based electrolyte solidified with SiO2 nanoparticles for dye-sensitized solar cells", Thin Solid Films, 2008, 516, 4645–4650.
[30] K. M. Lee, P. Y. Chen, C. P. Lee, K. C. Ho, "Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells", Journal of Power Sources, 2009, 190, 573–577.
[31] T. Kato, T. Kado, S. Tanaka, A. Okazaki, S. Hayase, "Quasi-Solid Dye-Sensitized Solar Cells Containing Nanoparticles Modified with Ionic Liquid-Type Molecules", Journal of the Electrochemical Society, 2006, 153, A626-A630.


[32] S. Cerneaux, S. M. Zakeeruddin, J. M. Pringle, Y.-B. Cheng, M. Grätzel, L. Spiccia, "Novel Nano-Structured Silica-Based Electrolytes Containing Quaternary Ammonium Iodide Moieties", Advanced Functional Materials, 2007, 17, 3200–3206.
[33] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, P. Falaras, "Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells", Nano Letters, 2002, 11, 1259-1261.
[34] J. Zhang, H. Han, S. Wu, S. Xu, Y. Yang, C. Zhou, X. Zhao, "Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells", Solid State Ionics, 2007, 178, 1595–1601.
[35] J. Zhang, H. Han, S. Wu, S. Xu, C. Zhou, Y. Yang, X, Zhao, "Ultrasonic irradiation to modify the PEO/P(VDF–HFP)/TiO2 nanoparticle composite polymer electrolyte for dye sensitized solar cells", Nanotechnology, 2007, 18, 295606-295614.
[36] Y. L. Lee, Y. J. Shen, Y. M. Yang, "A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications", Nanotechnology, 2008, 19, 455201-455207.
[37] M. S. Kang, K. S. Ahn, J. W. Lee, "Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes", Journal of Power Sources, 2008, 180, 896–901.
[38] N. G. Park, J. van de Lagemaat, A. J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells", Journal of Physical Chemistry B, 2000, 104, 8989-8994.
[39] Q. Shen, T. Toyoda, "Studies of optical absorption and transport in nanocrystalline TiO2 elcetrode", Thin Solid Films, 2003, 438, 167-170.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信