淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1708200623261300
中文論文名稱 一滴溶劑萃取一滴樣品溶液之超微量萃取法結合氣相層析離子阱質譜儀使用電子轟擊法之定量方法的開發
英文論文名稱 Combining drop-to-drop solvent microextraction with gas chromatography/ion trap-mass spectrometry using electronic ionization method to develop a quantitative method
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 94
學期 2
出版年 95
研究生中文姓名 秦偵哲
研究生英文姓名 Chen-Che Chin
學號 693170614
學位類別 碩士
語文別 中文
口試日期 2006-06-16
論文頁數 58頁
口試委員 指導教授-吳慧芬
委員-徐秀福
委員-何彥鵬
中文關鍵字 一滴溶劑萃取一滴樣品溶液之超微量萃取法 
英文關鍵字 Drop-to-Drop Solvent Microextraction(DDSME) 
學科別分類 學科別自然科學化學
中文摘要 本實驗開發一種新型態的溶劑微萃取法-一滴溶劑萃取一滴樣品溶液之超微量萃取法(DDSME)結合氣相層析離子阱質譜儀對甲氧基苯乙酮異構物進行定量分析,本方法具備了快速、裝置與操作簡便以及極少的溶劑與樣品使用量等優點。萃取最佳化後所得到的結果為利用甲苯作為萃取溶劑並控制其液滴大小在0.5μL、萃取時間為5分鐘及水樣不添加任何鹽類條件下可得到最佳分析物訊號強度。於此最佳條件下所得到的偵測極限為1ng/mL,相對標準偏差值小於2.6(n=5),線性範圍從0.01到5μg/mL(r2>0.954)。實驗最後亦將DDSME方法與其他樣品前處理技術,如:液-液萃取法(LLE)、一滴溶劑微萃取法(SDME)、中空纖維-液相微萃取法(HF-LPME)及固相微萃取法(SPME)進行偵測極限的比較。比較後發現本方法能較LLE(25ng/mL)得到一更低的偵測極限濃度,而且此結果與利用SDME(0.5ng/mL)、HF-LPME(1ng/mL)及SPME(0.5ng/mL)等方法所得到的偵測極限結果不相上下。
英文摘要 A novel analytical technique termed drop-to-drop solvent microextraction (DDSME) was developed to determine three methoxyacetophenone isomers in one drop of water, which were then detected by gas chromatography/mass spectrometry using electronic ionization mass spectrometry for quantification analysis. The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. The best optimum parameters for the DDSME technique were as follows: extraction time, 5 min; usingtoluene as the extraction solvent; volume of extraction solvent, 0.5μL and no salt addition. The limit of detection (LOD) for this technique was 1 ng/mL. The relative standard deviation was less than 2.6% (n=5). The linear range of the calibration curve of DDSME is from 0.01 to 5μg/mL with correlation coefficient (r2) of >0.954. In the comparison of the LOD of DDSME with other sample pretreatment methods including liquid-liquid extraction (LLE), single drop microextraction (SDME), hollow fiber based liquid phase microextraction(HF-LPME), and solid phasemicroextraction(SPME), this method shows much better than the LLE (25 ng/mL) and it is compatible with SDME (0.5ng/mL), HF-LPME (1ng/mL), and SPME (0.5
ng/mL).
論文目次 目錄
目錄 ……………………………………………………………………壹
圖表目錄 ………………………………………………………………参
其他研究成果 …………………………………………………………伍

內容:一滴溶劑萃取一滴樣品溶液之超微量萃取法結合氣相層析離子阱質譜儀使用電子轟擊法之定量方法的開發

一、緒論…………………………………………………………………1
1.1、溶劑微萃取技術的由來及介紹 …………………………………1
1.2、溶劑微萃取技術的類型 …………………………………………5
1.3、溶劑微萃取技術的萃取模式 ……………………………………6
1.4、溶劑微萃取技術的操作型態 ……………………………………6
1.5、溶劑微萃取技術之三項系統介紹 ………………………………8
1.6、新型態的溶劑微萃取技術介紹 …………………………………9
1.7、質譜儀……………………………………………………………10
1.8、電子撞擊法………………………………………………………11
1.9、研究目的…………………………………………………………11

二、實驗 ………………………………………………………………13
2.1、藥品………………………………………………………………13
2.2、儀器及參數設定…………………………………………………13
2.3、一滴溶劑萃取一滴樣品之超微量萃取步驟……………………14
2.4、液相–液相萃取法步驟…………………………………………14
2.5、一低溶劑微萃取法步驟…………………………………………15
2.6、中空纖維–液相微萃取法步驟…………………………………15
2.7、固相微萃取法步驟………………………………………………16

三、結果與討論 ………………………………………………………17
3.1、一滴溶劑萃取一滴樣品之超微量萃取法條件最佳化…………17
3.1.1、溶劑種類選擇…………………………………………………17
3.1.2、萃取時間………………………………………………………18
3.1.3、萃取溶劑液滴的大小…………………………………………18
3.1.4、鹽類添加濃度…………………………………………………19
3.1.5、混何溶劑的適用性……………………………………………20
3.2、一滴溶劑萃取一滴樣品之定量分析……………………………21
3.3、一滴溶劑萃取一滴樣品方法與其他萃取方法比較……………21

四、結論 ………………………………………………………………23

五、參考資料 …………………………………………………………50

圖表目錄
Fig 1-1. Side view of the solid phase microextraction apparatus used by Pawliszyn and Arthur in 1990 ……………24
Figure 1-2. Side view of the first commercial SPME device made by Supelco………………………………………………………25
Figure 1-3. Side view of the single drop microextraction system used by Jeannot and Cantwell in 1996…………………26
Figure 1-4. Photograph showing a 1μl drop of organic suspended from the needle tip in aqueous solution used by Jeannot and Cantwell in 1997 ……………………………………27
Figure 1-5. Scanning electron microscopic image of inner surface of the hollow fiber magnified by 2000 times used by X. Jiang and H. K. Lee in 2004………………………………28
Figure 1-6. Schematic representation of HF-LPME used by Psillakis, E. and Kalogerakis, N. in 2003……………………29
Figure 1-7. Side views of the apparatus used for headspace single drop solvent microextraction used by Michael A. Jeannot in 2001………………………………………………………30
Figure 1-8. Side views of direct-immersion single drop solvent microextraction used by H. Bagheri, A. Saber, and S. R. Mousavi in 2001………………………………………………31
Figure 1-9. Side views of dynamic HF-LPME within the hollow fiber used by L. Zhao and H. K. Lee in 2002 ………32
Figure 1-10. Schematic of LLLME used by Cantwell in 1998… ………………………………………………………………………… 33
Figure 1-11. Side views of the LLLEME extraction apparatus used by S. Pedersen-Bjergaard and K. E. Rasmussen in 1999.………………………………………………………………………… 34
Figure 1-12. Side views of the SBME extraction apparatus used by X. Jiang and H. K. Lee in 2004 ………………………35
Figure 1-13. Side view of headspace water-based liquid phase microextraction used by J. Zhang, T. Su and H. K. Lee in 2005……………………………………………………………36
Figure 1-14. Schematic representation of﹙1﹚tandem MS in space,﹙2﹚tandem MS in time ……………………………………37
Figure 1-15. Structures of methoxyacetophenone isomers…… ………………………………………………………………………… 38
Figure 1-16. Schematic of drop-to-drop solvent microextraction………………………………………………………39
Figure 1-17. Schematic of single drop microextraction……40
Figure 1-18. Schematic of hollow fiber based liquid phase microextraction………………………………………………………41
Figure 1-19. Schematic of solid phase microextraction……42
Figure 1-20. Effect of selection of solvent on drop-to-drop solvent microextraction technique for 10 ppm of three methoxyacetophenone isomers using 0.5 μl of the organic extraction phase exposed to one drop of water at room temperature, 5 min of extraction time, and no salt addition ………………………………………………………………43
Figure 1-21. Effect of extraction time on drop-to-drop solvent microextraction technique for 10 ppm of three methoxyacetophenone isomers using 0.5 μl of the toluene extraction phase exposed to the one drop of water at room temperature and no salt addition ………………………………44
Figure 1-22. Comparison of extraction efficiencies of drop-to-drop solvent microextraction technique at various organic solvent volumes for 10 ppm of three methoxyacetophenone isomers using toluene extraction phase exposed to the one drop of water at room temperature, 5 min of extraction time, and no salt addition ………………45
Figure 1-23. Effect of salt concentration on drop-to-drop solvent microextraction technique for 10 ppm of three methoxyacetophenone isomers using 0.5 μl of the toluene extraction phase exposed to the one drop of water at room temperature and 5 min of extraction time ……………………46
Figure 1-24A. Feasibility for using binary solvent in drop-to-drop solvent microextraction technique using (A) dichloromethane with n-hexane for 10 ppm of three methoxyacetophenone isomers using 0.5 μl of the extraction phase exposed to one drop of water at room temperature, 5 min of extraction time, and no salt addition ………………47
Figure 1-24B. Feasibility for using binary solvent in drop-to-drop solvent microextraction technique using (B) toluene with n-hexane for 10 ppm of three methoxyacetophenone isomers using 0.5 μl of the extraction
phase exposed to one drop of water at room temperature, 5 min of extraction time, and no salt addition ………………48
Table 1. Method parameters for combining drop-to-drop solvent microextraction with GC/MS using EI method to determine 2’-, 3’-, and 4’-methoxyacetophenone isomers under optimized conditions ………………………………………49

其他研究成果
其他研究果 ……………………………………………………………52
參考文獻 1. Skoog, D. A.; West, D. M.; Holler, F. J. Fundamental of
Analytical Chemistry, 7th ed., Saunders College
Publishing, Philadolphia, 1996.
2. Pawliszyn, J.; Arthur, C. L. Anal. Chem. 1990, 62, 2145.
3. Wu, W. J.; Ashley, D. L.; Watson, C. H. Anal. Chem.
2002, 74, 4878.
4. Doong, R. A.; Chang, S. M. Anal. Chem. 2000, 72, 3647.
5. Magdic, S.; Pawliszyn, J. J. Chromatogr. A 1996, 723,
111.
6. Kalogerakis, N.; Psillakis, E. J. Chromatogr. A 2001,
938, 113.
7. Jeannot, M. A.; Cantwell, F. F. Anal. Chem. 1996, 68,
2236.
8. Cantwell, F. F.; Jeannot, M. A. Anal. Chem. 1997, 69,
235.
9. He, Y.; Lee, H. K. Anal. Chem. 1997, 69, 4634.
10. Jiang, X.; Lee, H. K. Anal. Chem. 2004, 76, 5591.
11. Psillakis, E.; Kalogerakis, N. Trends Anal. Chem.
2003, 22, 565.
12. Wu, H. F.; Yan, C. H. Rapid Commun. Mass Spectrom.
2004, 18, 3015.
13. Theis, A. L.; Waldack, A. J.; Hansen, S. M.; Jeannot,
M. A. Anal. Chem. 2001, 73, 5651.
14. Bagheri, H.; Saber, A.; Mousavi, S. R. J. Chromatogr.
A 2004, 1046, 27.
15. Zhao, L.; Lee, H. K. Anal. Chem. 2002, 74, 2486.
16. Cantwell, F. F.; MA, M. Anal. Chem. 1998, 70, 3912.
17. Pedersen-Bjergaard, S.; Rasmussen, K. E. Anal. Chem.
1999, 71, 2650.
18. Zhang, J.; Su, T.; Lee, H. K. Anal. Chem. 2005, 77,
1998.
19. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. K.;
Whitehouse, C. Science. 1989, 246, 64.
20. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.
21. Dubey, D. K.; Gupta, A. K.; Pardasani, D.; Palit, M.
Anal. Chem. 2005, 77, 711.
22. Elefteria, P.; Nicolas, K. J. Chromatogr. A 2003, 999,
145.
23. Zhao, L.; Lee, H. K. J. Chromatogr. A 2001, 919, 381.
24. López-Blanco, M. C.; Simal-Gándara.; Cancho-Grande, B.;
Blanco-Cid, S. J. J. Chromatogr. A 2003, 984, 245.
25. Pltter, D. W.; Paueszyn, J. J. Chromatogr. A 1992,
625, 247.
26. Pillakis, E.; Kalogerakis, N. J. Chromatogr. A 2001,
907, 211.
27. Liu, J.; Jiang, G.; Cai, Y.; Zhou, Q.; Hu, J. T. Anal.
Chem. 2003, 75, 5870.
論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信