§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1707201908552700
DOI 10.6846/TKU.2019.00509
論文名稱(中文) 基於802.11Wi-Fi系統增強充電效率用戶體驗之研究
論文名稱(英文) The Study of Improving Wireless Charging Quality of Experience Based on 802.11 WiFi System
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系機器人工程碩士班
系所名稱(英文) Master's Program In Robotics Engineering, Department Of Electrical And Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 李伊涵
研究生(英文) I-Han Lee
學號 606470028
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-06-27
論文頁數 46頁
口試委員 指導教授 - 衛信文
委員 - 周建興(chchou@mail.tku.edu.tw)
委員 - 朱國志(kcchu@mail.lhu.edu.tw)
關鍵字(中) 無線充電
PoWiF
優化充電機制
關鍵字(英) RF wireless charging
POWIFI
第三語言關鍵字
學科別分類
中文摘要
物聯網世代的來臨大幅提升了無線充電技術之重要性,由於無線電
傳輸模式將可同時服務兩種類型的使用者,其中包含資料傳輸使用者及
充電需求使用者,因此本論文使用Wi-Fi無線電傳輸情境作為本論文之
研究主題。
  在過去的文獻中大多探討固定充電封包頻寬,然而這樣的模式則無
法滿足真實使用者之感受,因此本論文提出一套接近充電使用者需求外
亦可滿足資料傳輸使用者需求之充電機制。
  本論文所提出的充電機制針對使用者之充電需求、充電所耗費之時
間、其他使用者之網路需求與系統耗能等因素進行考量,並將使用者的
充電需求轉換成為所需的充電封包頻寬。 接著,我們提供一機制幫助
系統尋找合適的充電頻寬。然而使用者所需求的充電頻寬會因為使用者
裝置的電量而改變,因此本論文所提供的方法便是如何找到最合適的充
電曲線來符合使用者的需求。我們所提出的方法,首先透過使用者所需
之充電封包頻寬線平移至一圓之切點,再找尋各平移後之充電封包頻寬
線之解,以找到合適的充電曲線,使其達到較小的系統成本支出與較佳
的體驗質量。
  為了驗證本論文所提出的機制, 我們定義了不滿意參數
(Dissatisfy Parameter),並透過不滿意參數(Dissatisfy Parameter)
驗證過去方法及本論文之機制之比較,最終均以本論文所提出之機制為
最優化之方案。
英文摘要
As era of internet of things (IoT) coming, the importance of wireless charging
technology is dramatically increased. Because using radio transmission can service two
kinds of users, that is, the users who need to transmit data and the users who need charging
service for getting enough electricity. Thus, we use Wi-Fi access points as the services
providers in this thesis.
  There are many studies focus on providing electricity via radio frequency, but most of
them only considered fixed charging packet bandwidth condition in their charging
mechanisms. However these modes of charging mechanisms may not satisfy users’
requirements in the real scenario. Therefore this thesis provides a charging mechanism
which try to satisfy the requirements of most users in the system, that is, try to provide
good charging capability with reasonable network connectivity.
  To fulfill the requirements of most users, we focus on the issue of how to fulfill users’
charging demands under some charging time limitation while maintaining other users’ data
transmission demand and system power consumption. To address the issue, we convert the
devices’ charging requirement into the need of charging packet bandwidth based on the previous result. Then, we provide a mechanism that tries to find most suitable charging
packet bandwidth for the user. The charging packet bandwidth should be changed with
varied of the remaining energy capacity of users’ devices, hence can be represented as a
charging curve with respect to charging time. To find the feasible charging curve, the
mechanism shifts the power charging packet bandwidth lines to be the cut points of a
circle. After that, the mechanism can find the cross point of each shifted power charging
packet bandwidth lines and therefore conduct an appropriate charging curve.
  Finally, we verify the performance of the proposed mechanism by a defined dissatisfy
parameter. As show in the simulation results, the mechanism of this thesis can provide
good charging strategy while considering the requirement of users
第三語言摘要
論文目次
目錄
中文摘要…………………….…………………………………………………………………I
英文摘要………………….………………..…………………………………………………III
圖目錄……………….…………………..………………………………………………..….VI
表目錄…………………………………..………………………………………………..…VIII
第一章、緒論 ........................................................................................................................... 1
1.1 前言 ............................................................................................................................... 1
1.2 動機與目的 .................................................................................................................... 2
1.3 論文大綱 ........................................................................................................................ 3
第二章、相關研究與背景知識 ............................................................................................... 4
2.1 研究背景 ......................................................................................................................... 4
2.2 PoWi-Fi 簡介 .................................................................................................................. 8
2.3 參考文獻之實驗環境建置與量測結果 ........................................................................ 9
2.4 Wi-Fi 無線廣播充電封包機制 .................................................................................... 11
2.5 實驗環境建置及量測 ................................................................................................... 13
2.6 問題定義 ...................................................................................................................... 14
第三章、研究方法 ................................................................................................................. 15
3.1 二種充電封包頻寬之切換轉折點 .............................................................................. 15
3.2 三種充電封包頻寬之切換轉折點 .............................................................................. 17
3.3 多種充電封包頻寬之切換轉折點 .............................................................................. 22
3.4 多種充電封包頻寬之切換轉折點之運作流程 .......................................................... 25
第四章、實驗結果 ................................................................................................................. 27
4.1 以原實驗環境驗證充電機制 ...................................................................................... 27
4.2 系統成效驗證 .............................................................................................................. 30
4.3 機制之限制 .................................................................................................................. 39
第五章、結論與未來展望 ................................................................................................. 42
參考文獻 ................................................................................................................................ 44

圖目錄
圖 2.1 無線電傳輸充電系統…………………………………………….5
圖 2.2 感應式充電系統………………………………………………….5
圖 2.3 共振式充電系統…………………………………….……………5
圖 2.4Ambient Backsctter 運作示意圖……………………….……..…...8
圖 2.5 PoWi-Fi 系統架構圖………………………………………...……9
圖 2.6 PoWi-Fi 運作情境圖…………………………………..………….9
圖 2.7 參考文獻[3]之實驗情環境圖……..…………………..…...…….10
圖 2.8 各充電方法之測試結果…….……..………………………....….12
圖 2.9 實驗環境設定示意圖……….……..…………….………...…….13
圖 2.10 不同充電頻寬之充電時間與充電效率關係圖…….………….14
圖 3.1 100%與10%間之切換情境圖….……...……….……………..…15
圖 3.2 L2平移結果….……..………………………..………………..…16
圖 3.3 L2平移至通過點(m,n)示意圖….……….………….………..…17
圖 3.4 原點至點(m,n)線之垂直平分線….……….………………..…...18
圖 3.5 L2'之垂直線示意圖….……………….......…………………..…...19
圖 3.6 圓心O之生成示意圖…………………………………….……..20
圖 3.7 圓半徑示意圖……………………………………………….…..20
圖 3.8 L3'定義示意圖………….....................……….………………....21
圖3.9 充電策略軌跡示意圖……………………………....……….…..22
圖 3.10 多種充電封包頻寬之切線轉折點之運作流程圖……...……..26
圖 4.1 充電任務示意圖…………………………..……..………….…..27
圖 4.2 切線平移後之充電封包頻寬……………………..………….....29
圖 4.3 充電軌跡……………..…………………………..………….…..30
圖 4.4 二種充電封包頻寬情境示意圖….……………………...….…..32
圖4.5 50%充電封包頻寬百分比於該任務示意圖.……………….…..33
圖 4.6 L2於該任務之平移示意圖.………………....………...…….…..34
圖 4.7 充電軌跡示意圖.……………….……………………………….34
圖 4.8 dp 軌跡圖.……………….....……………………………….…...35
圖4.9 三種充電封包頻寬情境示意圖.…………….………………….36
圖 4.10 圓心定義示意圖.………………....…….………...……………37
圖 4.11 充電分布軌跡示意圖.……………………….…...……………37
圖 4.12 dp 軌跡圖.………………....…………..…...………..…………38
圖 4.13 dp 軌跡圖.………………....……………….………..…………39
圖 4.14 各平移切線與圓之位置關係圖.…………....………..……….40
圖 4.15 移動後交點及分布圖.……………………….……...…………41
圖 4.16 dp 軌跡圖.………………....………….………………..………41

表目錄
表 2.1 充電封包頻寬與充電電壓關係.……………....……..…………10
表 2.2 充電封包頻寬與充電功率關係.……………....…...……………10
表 2.3 充電封包頻寬與充電時間對照表.……………....….....…..……14
參考文獻
[1] Vamsi Talla, Bryce Kellogg, Benjamin Ransford, Saman Naderiparizi,
Shyamnath Gollakota, and Joshua R. Smith. 2015. Powering the next
billion devices with wi-fi. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and
Technologies (CoNEXT '15). ACM, New York, NY, USA, , Article 4 ,
13 pages. DOI: https://doi.org/10.1145/2716281.2836089
[2] C. R. Valenta and G. D. Durgin, ”Harvesting Wireless Power: Survey
of Energy-Harvester Conversion Efficiency in Far-Field, Wireless
Power Transfer Systems,” in IEEE Microwave Magazine, vol. 15, no.
4, pp. 108-120, June 2014.
[3] 周存陸(2017)。《利用廣播封包時線無線充電之研究》。淡江大
學電機工程學系碩士論文,未出版,新北市。
[4] Wireless Charging Technologies: Fundamentals Standards, and
Network Applications. Xiao Lu, Ping Wang, Dusit Niyatio, Dong In
Ki, and Zhu Han. Department of Electrical and Computer
Engineering, University of Alberta, Canada school of Computer
Engineering, Nanyang Technological University, Singapore, School
of Information and Communication Engineering, Sungkyunwan
University(SKKU), Korea, Electrical and Computer Engineering,
University of Houston , Texas, USA.
[5] S. Nikoletseas, T. P. Raptis, and C. Raptopoulos, “Low Radiation
Efficient Wireless Energy Transfer in Wireless Distributed Systems,”
in Proc. of IEEE 35th International Conference on Distributed
Computing Systems(ICDCS), Columbus, OH, June 2015.
[6] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David
Wetherall, and Joshua R. Smith. 2013. Ambient backscatter: wireless
45
communication out of thin air. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM (SIGCOMM '13). ACM,
New York, NY, USA, 39-50. DOI:
https://doi.org/10.1145/2486001.2486015
[7] Aaron N. Parks, Angli Liu, Shyamnath Gollakota, and Joshua R.
Smith. 2014. Turbocharging ambient backscatter communication.
SIGCOMM Comput. Commun. Rev. 44, 4 (August 2014), 619-630.
DOI: https://doi.org/10.1145/2740070.2626312
[8] T. Imura, H. Okabe and Y. Hori, "Basic experimental study on
helical antennas of wireless power transfer for Electric Vehicles by
using magnetic resonant couplings," 2009 IEEE Vehicle Power and
Propulsion Conference, Dearborn, MI, 2009, pp. 936-940. doi:
10.1109/VPPC.2009.5289747
[9] C. R. Valenta and G. D. Durgin, "Harvesting Wireless Power: Survey
of Energy-Harvester Conversion Efficiency in Far-Field, Wireless
Power Transfer Systems," in IEEE Microwave Magazine, vol. 15, no.
4, pp. 108-120, June 2014. doi: 10.1109/MMM.2014.2309499
[10]Z. Ding et al., "Application of smart antenna technologies in
simultaneous wireless information and power transfer," in IEEE
Communications Magazine, vol. 53, no. 4, pp. 86-93, April 2015. doi:
10.1109/MCOM.2015.7081080
[11]K. Huang and V. K. N. Lau, "Enabling Wireless Power Transfer in
Cellular Networks: Architecture, Modeling and Deployment," in
IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp.
902-912, February 2014. doi: 10.1109/TWC.2013.122313.130727
[12]B. Tong, Z. Li, G. Wang and W. Zhang, "How Wireless Power
Charging Technology Affects Sensor Network Deployment and
Routing," 2010 IEEE 30th International Conference on Distributed
Computing Systems, Genova, 2010, pp. 438-447.
46
[13]C. Liu, C. Jiang and C. Qiu, "Overview of coil designs for wireless
charging of electric vehicle," 2017 IEEE PELS Workshop on Emerging
Technologies: Wireless Power Transfer (WoW), Chongqing, 2017, pp.
1-6.
doi: 10.1109/WoW.2017.7959389
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信