§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1707201816320100
DOI 10.6846/TKU.2018.00491
論文名稱(中文) 螺旋式套管型二氧化碳吸收於醇胺水溶液之理論與實驗研究
論文名稱(英文) Experimental and Theoretical Studies of Absorption of CO2 by Amine solution through the Spiral Wire Channel in Concentric Circular Membrane Module
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 林冠宏
研究生(英文) Guan-Hong Lin
學號 605400422
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-25
論文頁數 141頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 陳俊成(luke@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
關鍵字(中) 二氧化碳
醇胺水溶液
螺旋式套管型
數值解
薄膜氣體吸收系統
關鍵字(英) CO2 absorption
Amine solution
Spiral wire channel
absorption efficiency improvement
Concentric Circular Membrane Module
第三語言關鍵字
學科別分類
中文摘要
本研究主要著重於螺旋式套管型薄膜氣體吸收系統進行理論分析,建立一維數學理論模型描述系統氣體溶質於氣、液兩相內之濃度分佈式,藉由朗吉庫塔數值解方法來分析。實驗中操作參數以改變不同流率、濃度、加裝螺旋型檔板等並進行探討與實驗模擬。本論文主以薄膜氣體吸收所推導之理論以醇胺水溶液於二氧化碳之化學吸收作探討,其目的為: (1)於液體側加裝螺旋型檔板之設計以增加流體速度與通道長度。(2)藉由一維數學理論模型針對薄膜氣體吸收設備的質量傳送機制進行研究探討,配合謝塢數經驗公式與實驗分析並相互驗證其準確性。論文研究結果顯示在加裝螺旋型檔板後的能提升系統莫耳吸收通量,最高可以達到46.45%,而實驗與理論的相對誤差最高為2.16%。本研究以操作在低體積流率之設備為主,除了有效利用螺旋增益因子的設定已降低操作成本外,改良之設計更顯著提升了莫耳吸收通量。
英文摘要
The CO2 absorption by using amine solution through the spiral wire channel in concentric circular membrane contactor of concurrent-flow and countercurrent-flow operations was investigated experimentally and theoretically in this research.  The one-dimensional mathematical modeling equation for predicting the absorption rate and concentration distributions under various varies absorbent flow rate, CO2 feed flow rate and inlet CO2 concentration in the gas feed was solved numerically using the fourth Runge–Kutta method with shooting strategy.  The amine solution flowing through the annulus of a concentric circular tube, which a tight fitting spiral wire in a small annular spacing is inserted, could enhance the CO2 absorption efficiency improvement. Meanwhile, the correlated equation of average Sherwood number to predict the mass transfer coefficient of the CO2 absorption in concentric circular membrane contactor with the spiral wire channel is also obtained.  The absorption efficiency enhancement is represented graphically and validated by experimental results within acceptable accuracy.  The purposes of this study are (1) to develop the mass-transfer coefficient correlation for the spiral wire channel; (2) to develop a one-dimensional mathematical model and propose a general numerical method for predicting the CO2 absorption efficiency in concentric circular membrane modules; (3) to study the effects of various operation parameters on the CO2 absorption efficiency improvement.
第三語言摘要
論文目次
目錄
第一章 緒論	1
1-1前言	1
1-2薄膜分離原理	4
1-2-1氣體吸收原理與種類	6
1-2-2分離吸收方法	8
1-2-3二氧化碳吸收於醇胺水溶液性質	10
1-3 薄膜吸收系統簡介	13
1-4 研究動機、目的與方向	14
第二章  文獻回顧	17
2-1 文獻回顧	17
第三章  理論分析	22
3-1	螺旋式套管型薄膜吸收系統模組之質量傳送機制分析	22
3-1-1薄膜吸收系統模組質傳機制之理論分析	24
3-1-2 螺旋式套管型薄膜吸收系統模組之理論分析	31
3-1-3 濃度極化現象與濃度極化係數	33
3-2	螺旋式套管型系統之螺旋增益因子與謝塢數經驗式建立與模型	35
3-3 螺旋式套管型薄膜吸收系統模組一維理論模型之建立	38
3-3-1螺旋式套管型薄膜吸收系統模組一維理論模型	39
3-3-2理論數據取得與計算分析流程-朗吉庫塔數值解析	44
3-3-3實驗數據之取得與分析計算流程	47
3-4水力損耗	53
3-5 數學模擬參數之設定	55
第四章  實驗分析	57
4-1 螺旋式套管型薄膜吸收系統	57
4-2螺旋式套管型薄膜吸收模組	63
4-3	實驗步驟	67
4-3-1順流吸收實驗	67
4-3-2逆流吸收實驗	68
第五章 結果與討論	69
5-1 新型螺旋增益因子之謝塢數經驗公式與迴歸分析	69
5-2套管型薄膜吸收系統模組系統	73
5-2-1 系統操作變因對於莫耳吸收通量之影響	73
5-2-2 濃度分佈與濃度極化現象	73
5-3添加螺旋增益因子之螺旋式套管型薄膜吸收系統模組系統	86
5-3-1 螺旋增益因子對於莫耳吸收通量與吸收率之影響	86
5-3-2 濃度分佈與濃度極化現象	87
5-4 模組設計參數於吸收率與水力損耗之影響	119
5-4-1 莫耳吸收通量增益程度與水力損耗提升程度	119
5-4-2 莫耳吸收通量與水力損耗提升程度之比較	121
第六章  結論	128
6-1 新型增益因子之謝塢數經驗公式	129
6-2 螺旋式套管型薄膜吸收系統	129
6-3 添加螺旋增益因子之螺旋式套管型薄膜吸收系統	129
6-4 模組設計參數於莫耳吸收通量與水力損耗之影響	130
符號說明	131
參考文獻	134
 
圖目錄
圖1-1-1 碳循環	2
圖1-2-2 吸收與吸附於二氧化碳之種類[14]	8
圖3-1-1 薄膜吸收系統質量傳送機制示意圖	24
圖3-1-2 薄膜吸收系統於薄膜內部之質量傳送阻力模式	28
圖3-1-3 薄膜吸收系統模組傳送阻力示意圖	31
圖3-1-4 質量傳送之阻力串聯模式	32
圖3-1-5 濃度極化示意圖	34
圖3-3-1 薄膜吸收模組示意圖 (A)套管型 (B)螺旋式套管型	40
圖3-3-2螺旋式套管型薄膜吸收系統示意圖 (順流操作)	41
圖3-3-3螺旋式套管型薄膜吸收系統示意圖 (逆流操作)	43
圖3-3-4朗吉庫塔法求解聯立方程組之計算示意圖(A)順流(B)逆流	47
圖3-3-5不同操作流態之濃度分佈示意圖	47
圖3-3-6質傳係數運算流程圖	50
圖3-3-7螺旋式套管型薄膜吸收系統運算流程圖 (順流操作)	51
圖3-3-8螺旋式套管型薄膜吸收系統運算流程圖 (逆流操作)	52
圖4-1-1 螺旋式套管型薄膜吸收模組之二氧化碳吸收系統簡圖	58
圖4-1-2螺旋式套管型薄膜吸收模組之二氧化碳吸收系統簡圖	58
圖4-1-3螺旋式套管型模組於醇胺水溶液吸收二氧化碳設備圖	59
圖4-1-4氣體質量控制器	60
圖4-2-1螺旋式套管型薄膜吸收模組示意圖	63
圖4-2-2中央之壓克力管(A)實際圖(B)將薄膜固定於管上	64
圖4-2-3 螺旋型檔板	65
圖4-2-4 固定螺旋檔板後之薄膜管	66
圖4-2-5 薄膜氣體吸收模組實際圖(A)套管型(B)螺旋式套管型	66
圖5-1-1 謝塢數理論值與實驗值比較圖	72
圖5-2-1套管於不同操作參數對於莫耳吸收通量之影響 (順流操作)	77
圖5-2-2套管於不同操作參數對於莫耳吸收通量之影響 (逆流操作)	78
圖5-2-3套管於不同操作參數對於吸收效率之影響 (順流操作)	79
圖5-2-4套管於不同操作參數對於吸收效率之影響 (逆流操作)	80
圖5-2-5 順流狀態下,不同操作參數於濃度極化係數之影響	83
圖5-2-6 逆流狀態下,不同操作參數於濃度極化係數之影響	84
圖5-3-1螺旋式套管(2 cm)於不同操作參數對於莫耳吸收通量之影響 (順流操作)	89
圖5-3-2螺旋式套管(3 cm)於不同操作參數對於莫耳吸收通量之影響 (順流操作)	90
圖5-3-3螺旋式套管(2 cm)於不同操作參數對於莫耳吸收通量之影響 (逆流操作)	91
圖5-3-4螺旋式套管(3 cm)於不同操作參數對於莫耳吸收通量之影響 (逆流操作)	92
圖5-3-5不同操作參數對於莫耳吸收通量之影響-CO2=30% (順流操作)	93
圖5-3-6不同操作參數對於莫耳吸收通量之影響-CO2=35% (順流操作)	94
圖5-3-7不同操作參數對於莫耳吸收通量之影響-CO2=40% (順流操作)	95
圖5-3-8不同操作參數對於莫耳吸收通量之影響-CO2=30% (逆流操作)	96
圖5-3-9不同操作參數對於莫耳吸收通量之影響-CO2=35% (逆流操作)	97
圖5-3-10不同操作參數對於莫耳吸收通量之影響-CO2=40% (逆流操作)	98
圖5-3-11裝載不同寬度之螺旋檔板,理論與實驗之二氧化碳莫耳吸收速率與液相平均流速之關係。(Qa=5cm3/s ; 30% CO2)  (順流操作)	99
圖5-3-12裝載不同寬度之螺旋檔板,理論與實驗之二氧化碳莫耳吸收速率與液相平均流速之關係。(Qa=5cm3/s ; 30% CO2)  (逆流操作)	100
圖5-3-13裝載不同寬度之螺旋檔板,理論與實驗之二氧化碳莫耳吸收速率與液相平均流速之關係。(Qa=5cm3/s ; 35% CO2)  (順流操作)	101
圖5-3-14裝載不同寬度之螺旋檔板,理論與實驗之二氧化碳莫耳吸收速率與液相平均流速之關係。(Qa=5cm3/s ; 35% CO2) (逆流操作)	102
圖5-3-15裝載不同寬度之螺旋檔板,理論與實驗之二氧化碳莫耳吸收速率與液相平均流速之關係。(Qa=5cm3/s ; 40% CO2) (順流操作)	103
圖5-3-16裝載不同寬度之螺旋檔板,理論與實驗之二氧化碳莫耳吸收速率與液相平均流速之關係。(Qa=5cm3/s ; 40% CO2)	104
圖5-3-17不同操作參數對於吸收效率之影響-CO2=30% (順流操作)	105
圖5-3-18不同操作參數對於吸收效率之影響-CO2=35% (順流操作)	106
圖5-3-19不同操作參數對於吸收效率之影響-CO2=40% (順流操作)	107
圖5-3-20不同操作參數對於吸收效率之影響-CO2=30% (逆流操作)	108
圖5-3-21不同操作參數對於吸收效率之影響-CO2=35% (逆流操作)	109
圖5-3-22不同操作參數對於吸收效率之影響-CO2=40% (逆流操作)	110
圖5-3-23套管型系統與螺旋式套管型模組於主流區域與薄膜表面濃度分佈之影響 (順流操作)	115
圖5-3-24套管型系統與螺旋式套管型模組於主流區域與薄膜表面濃度分佈之影響 (逆流操作)	116
圖5-3-25不同螺旋檔板寬度與操作參數於濃度極化係數之影響 (順流操作)	117
圖5-3-26不同螺旋檔板寬度與操作參數於濃度極化係數之影響 (逆流操作)	118
圖5-3-27不同螺旋檔板寬度與操作參數於莫耳吸收通量增益程度與水力損耗提升程度比值之影響 (順流操作)	122
 
表目錄
表1-2-1 常見的輸送現象方程式	5
表1-2-2常使用之醇胺種類	11
表1-2-3 摻合醇胺之研究文獻	12
表3-2-1經驗式參數表	36
表3-5-1 模組相關參數	55
表3-5-2 疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數	55
表3-5-3 流體相關參數	56
表4-1 PTFE/PP 複合膜之薄膜性質	60
表5-1-1 謝塢數經驗公式所需實驗數據之操作變因表	70
表5-2-1 順、逆流操作下套管式薄膜吸收系統模組系統莫耳吸收通量實驗值與理論值之相對誤差比較表 (Qa=0.3L/min)	81
表5-2-2順、逆流操作下套管式薄膜吸收系統模組系統吸收率實驗值與理論值之相對誤差比較表 (Qa=0.3L/min)	82
表5-2-3不同操作流向於平均濃度極化係數之影響比較表	85
表5-3-1順、逆流操作下螺旋式套管型薄膜吸收模組系統,裝載寬度2 cm螺旋檔板,吸收率實驗值與理論值之相對誤差比較表	111
表5-3-2順、逆流操作下螺旋式套管型薄膜吸收模組系統,裝載寬度3 cm螺旋檔板,吸收率實驗值與理論值之相對誤差比較表	112
表5-3-3順、逆流操作下螺旋式套管型薄膜吸收模組系統,裝載寬度2 cm螺旋檔板,莫耳吸收通量實驗值與理論值之相對誤差比較表	113
表5-3-4順、逆流操作下螺旋式套管型薄膜吸收模組系統,裝載寬度3 cm螺旋檔板,莫耳吸收通量實驗值與理論值之相對誤差比較表	114
表5-4-1 順流操作下套管型與螺旋式通道型薄膜吸收系統模組系統,不同螺旋型檔板寬度之理論莫耳吸收通量增益比例表	123
表5-4-2逆流操作下套管型與螺旋式通道型薄膜吸收系統模組系統,不同螺旋型檔板寬度之理論莫耳吸收通量增益比例表	124
表5-4-3 不同螺旋型檔板寬度之水力損耗提升程度比較表	125
表5-4-4 順流操作下,不同模組設計參數之理論莫耳吸收通量增益程度與水力損耗提升程度比值表	126
表5-4-5 逆流操作下,不同模組設計參數之理論莫耳吸收通量增益程度與水力損耗提升程度比值表	127
參考文獻
參考文獻
1. International Energy Agency, (2017). Key World Energy Statistics 2017, Paris: IEA Publication.
2. 徐恆文(2007)。科學發展,台北市,財團法人國家實驗研究院科技政策研究與資訊中心,413期, p.24-27。
3. H. M. Yeh, Y. S. Shu, 1999, Analysis of Membrane Extraction Through Rectangular Mass Exchangers, Chem. Eng. Sci. 54, 897.
4. J. J. Guo, C. D. Ho, H. M. Yeh, 2007, Mass-Transfer Efficiency of Membrane Extraction in Laminar Flow between Parallel-Plate Channels: Theoretical and Experimental Studies, Ind. Eng. Chem. Res. 46, 7788-7801.
5. J. J. Guo, C. D. Ho, 2009, Theoretical and experimental studies of membrane extraction of Cu2+ with D2EHPA through rectangular conduits. Chem. Eng. Process., 48, 111–119.
6. W. K. Wang, 2001, Membrane Separations in Biotechnology, New York: M. Dekker.
7. A. E. Fouda, 1989, Membrane Separations in Chemical Engineering, New York : American Institute of Chemical Engineers.
8. L. E. Applegate, 1984, Membrane Separation Processes, Chem. Eng., 91, 64.
9. P. M. Bungay, H. K. Lonsdale , M. N. De Pinho, 1986, Synthetic Membrane: Science, Engineering and Applications, D. Redel Publishing Company, Holland.
10. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, 2002, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639.
11. H. M. Yeh, Y. Y. Peng ,Y. K. Chen, 1999, Solvent Extraction through a Double-pass Parallel-plate Membrane Channel with Recycle, J. Membr. Sci., 163, 177.
12. S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, 2009, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere. 75, 1410-1416.
13. J. You, L. Tian, C. Zhang, H. Yao, W. Dou, B. Fan, S. Hu, 2016, Adsorption Behavior of Carbon Dioxide and Methane in Bituminous Coal: A Molecular Simulation Study, Chin. J. Chem. Eng..
14. C. H. Yu, C. H. Huang, C. S. Tan, 2012, A Review of CO2 Capture by Absorption and Adsorption, Aerosol Air Qual. Res., 12, 745-769
15. G. Sartori, D. W. Savage, 1983, Sterically hindered amines for carbon dioxide removal from gases, Xnd. Eng. Chem. Fundam., 22, 239-249.
16. T. Chakravarty, U. K. Phukan, R. H. Weiland, 1985, Reaction of Acid Gases with Mixtures of Amine. Chem. Eng. Prog., 81, 32-36.
17. Arthur L Kohl , Richard Nielsen, 1997, Gas Purification, 5th edition. Gulf, Houston, TX.	
18. C. D. Ho, Y. J. Sung, Y. C. Chuang, 2013, An Analytical Study of Laminar Concurrent Flow Membrane Absorption Through a Hollow Fiber Gas–Liquid Membrane Contactor, J. Membr. Sci., 428, 232.
19. C.D. Ho, Luke Chen, Li Chen, Jing-Wei Liou , Li-Yang Jen, 2018, Theoretical and experimental studies of CO2 absorption by the amine solvent system in parallel-plate membrane contactors, Sep. Purif. Technol.,198, 128-136.
20. H.M. Yeh, H.C. Ward, 1971, The improvement in separation of concentric tube thermal diffusion columns, Chem. Eng. Sci., 26(6), 937-947. 
21. G. M. Brown, 1969, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6, 179.
22. E. J. Davis, 1973, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51, 562.
23. H. M. Yeh, T.W. Chang , S. W. Tsai, 1986, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21, 403.
24. C. D. Ho, H. M. Yeh, W. S. Sheu, 1998, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer., 44, 2589.
25. C. D. Ho, Jr-Wei Tu, 2007, "Mass Transfer Enhancement of Conjugated Graetz Problems in Multi-Pass Parallel-Plate Mass Exchangers with External Recycle," Chem. Eng. Commun., 194(1), 69-84.
26. Q. Zhang, E. L. Cussler, 1985, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membr. Sci., 23, 321.
27. Q. Zhang, E. L. Cussler, 1985, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membr. Sci., 23, 333.
28. H. Kreulen, G. F. Versteeg, C. A. Smolders, W. P. M. van Swaaij, 1992, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, Sep. Purif. Technol., 73, 2-3.
29. H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membr. Sci., 78, 197.
30. H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membr. Sci., 78, 217.
31. H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48, 2093.
32. Y. S. Kim, S. M. Yang, 2000, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Absorbent, Sep. Purif. Technol., 21, 101-109.
33. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park , K. H. Lee, 2001, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membr. Sci., 194, 57-67.
34. J. Phattaranawik, R. Jiraratananon, 2001, Direct contact membrane distillation : effect of mass transfer on heat transfer., J. Membr. Sci., 188, 137-143.
35. J. Phattaranawik, R. Jiraratananon, A.G Fane. 2003, Effect of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206.
36. S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, 2009, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere, 75, 1410.
37. L. Martínez-Díez, M.I. Vázquez-González, 1998, Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37, 4128-4135.
38. V.A. Bui, L.T.T. Vu, M.H. Nguyen, 2010, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85-93.
39. S. Srisurichan, R. Jiraratananon, A.G. Fane, 2006, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci. 227, 186-194
40. K.W. Lawson, D.R. Lloyd, 1996, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123.
41. Z. Ding, L. Liu, R. Ma , 2003, Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215, 11-23.
42. R. Sakwattanapong, A. Aroonwilas, A. Veawab, 2005, Beahavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines, Ind. Eng. Chem. Fundls., 44, 4465.
43. J.A. Howell, R.W. Field, D. Wu, 1993, Yeast cell microfiltration: flux enhancement in baffled and pulsatill flow system, J. Membr. Sci., 80, 59-65. 
44. B.B. Gupta, J.A. Howell, D. Wu , R.W. Field , 1995, A helical baffle for cross-flow microfiltration, J. Membr. Sci., 99, 31-42.
45. H. M. Yeh, J. F. Dong, M.J. Hsieh, C.C Yang, 2002, “Prediction of permeate flux for ultrafiltration in wire-rod tubular-membrane modules.” J. Membr. Sci., 209, 19-26.
46. P. Poskas, S. Vytautsa, 2012, Heat transfer in initial part of thermal stabilization of helical channels in air flow, Heat Transfer Resarch, 43(5), 443-460.
47. S. Bhattacharya, S.T Hwang, 1997, Concentration polarization, separation factor, and Peclet number in membrane processes, J. Membr. Sci., 32, 73-90.
48. N. Haimour , O.C. Sandall, 1984, Absorption of Carbon Dioxide Into Aqueous Methyldiethanolamine. Chem. Eng. Sci., 39, 1791
49. T. C. Tsai, J. J. Ko, H. M. Wang, C. Y. Lin, M. H. Li, 2000, Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions, J. Chem. Eng. Data., 45, 341
50. C. H. Liao, M. H. Li, 2002, Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine, Chem. Eng. Sci., 57, 4569.	
51. W. Li, J. Chen, 2009, Kinetics of absorption of CO2 into aqueous MEA solutions, Science paper Online. 4, 849.
52. P.V. Danckwerts, 1981, Insights into CHEMICAL ENGINEERING. New York: Pergamon press Inc.
53. Q. Zheng, L. Dong, J. Chen, G. Gao, W. Fei, 2010, Absorption solubility calculation and process simulation for CO2 capture, CIESC J., 61 1740-1746.
54. K.W Lawson., D.R. Lloyd, 1997, Membrane distillation, J. Membr. Sci., 124, 1-25.
55. R.W. Schofield, A.G. Fane, C.J.D. Fell, 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299–313.
56. Z. Ding, R. Ma, A.G. Fane, 2003, A new model for mass transfer in direct contact membrane distillation, Desalination, 151(3), 217-227.
57. F.A. Banat, J. Simandl, 1998, Desalination by membrane distillation : a parametric study, Sci. Techol., 33, 201-226.
58. S.B. Iversen, V.K. Bhatia, K. Dam-Jphasen, G. Jonsson, 1997, Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci., 130, 205-217.
59. E.N. Fuller, P.D. Schettler and J.C. Giddings, 1966, New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem., 58, 18-27.
60. J. Phattaranawik, R. Jiraratananon, A.G. Fane, C. Halim, 2001, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187, 193-201.
61. J. Phattaranawik, R. Jiraratananon, A.G. Fane, 2003, Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206.
62. T.C. Chen, C.D. Ho, H.M. Yeh, 2009, Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Mem. Sci., 330, 279-287.
63. J.R. Welty, C.E. Wick, R.E. Wilson, 1984, Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York.
64. S.G. Kandlikar, D. Schmitt. , 2005, Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels, PHYSICS OF FLUIDS, 17, 100606.
65. R.B. Bird, W.E. Stewart, Lightfoot E.N. , 2007, Transport Phenomena, second ed., John Wiley & Sons, New York. 
66. W.P. Wang, H.T. Lin , C.D. Ho, July, 2006, "An Analytical Study of Laminar Co-Current Flow Gas Absorption through a Parallel-Plate Gas-Liquid Membrane Contactor," J. Membr. Sci., 278, 181-189.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信