§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1707201816153300
DOI 10.6846/TKU.2018.00489
論文名稱(中文) 雙件式氣隔型薄膜蒸餾系統於海水淡化之效率提升
論文名稱(英文) Device Performance Improvement of Double-unit Air Gap Membrane Distillation Module for Seawater Desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 陳禹安
研究生(英文) Yu-An Chen
學號 605400042
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-06-25
論文頁數 119頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 陳俊成(luke@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
關鍵字(中) 氣隔式薄膜蒸餾系統
透膜通量
碳纖維板
溫度極化
關鍵字(英) Air gap membrane distillation
Permeate flux
Carbon-fiber spacers
Temperature polarization
第三語言關鍵字
學科別分類
中文摘要
薄膜蒸餾技術運用於海水淡化,優點為有效利用低溫熱源、可操作於常壓下及設備精簡,因此能使成本低廉,故成為十分具有吸引力的開發技術。本研究之氣隔式薄膜蒸餾系統是利用多孔性疏水膜作為介質,利用薄膜兩側之流體溫度差異導致飽和蒸汽壓不同,驅動水蒸氣穿透薄膜及氣隔層,在金屬板上冷凝,達到分離之目的。研究之操作為3.5wt%鹽水之純化,操作變因為流體進口溫度、體積流率,而設計變數是以波浪型碳纖維板當作紊流促進因子,結合數學模型理論,探討系統溫度極化之改善。
本研究針對氣隔式薄膜蒸餾系統之效率改善主要有兩大方向:
(1)薄膜之熱流層側加裝波浪型碳纖維板作為新型紊流促進因子(eddy promoter),使流體流動時產生擾流狀態,增加通道內部之熱對流效應,改善溫度極化現象,有效提升系統產能,並歸納出新型納賽數經驗公式。
(2)建立一維數學模型,探討系統之熱量傳送及質量傳送機制及數學解析程序,透過實驗結果分析驗證經驗公式之適用性,並分析在不同設計參數及操作條件下之溫度極化係數、透膜通量增益百分比及水力損耗增加百分比。
    本研究之操作型態為雙件式氣隔型薄膜蒸餾系統,有效利用熱側之流體,降低操作成本,且研究結果顯示,加裝波浪型碳纖維板作為新型紊流促進因子能有效提升系統之透膜通量,其實驗值與理論值相對誤差總平均為5.39 %,而最高之單位面積增益量為16.81 %。
英文摘要
The modeling equations for predicting distillate flux in a double-unit air gap membrane distillation (AGMD) module with inserting corrugated carbon-fiber open slots were developed theoretically and experimentally. The double-unit design gives a more compact module with an increase in pure water productivity for desalination applications. The operation of AGMD module with inserting carbon fiber spacers results in a higher permeate flux as compared to that of the module with an empty channel. The corrugated carbon-fiber open slots acting as an eddy promoter could not only strengthen the membrane stability for preventing from vibration but also enhance the distillate flux with lessening temperature polarization effect. The correlated expression of Nusselt number for inserting corrugated carbon-fiber open slots was formulated incorporating with experimental data, and thus, the prediction of the heat transfer coefficient for the AGMD module was obtained. The effects of volumetric flow rate and fluid inlet temperature on the permeate flux were also delineated with considering the power consumption increment due to inserting corrugated carbon-fiber open slots. The good agreement between the experimental results and theoretical predictions was accomplished.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	IX
第一章 緒論	1
1-1 引言	1
1-2 薄膜蒸餾系統簡介	5
1-3 研究動機與方向	9
第二章 文獻回顧	12
2-1 薄膜蒸餾	12
2-2 紊流促進因子	16
第三章 理論分析	19
3-1	氣隔式薄膜蒸餾系統之熱量、質量傳送機制分析	19
3-1-1 氣隔式薄膜蒸餾系統質傳機制之理論分析	22
3-1-2 氣隔式薄膜蒸餾系統熱傳機制之理論分析	28
3-1-3 溫度極化現象	34
3-2	紊流促進因子納賽數經驗公式之建立	36
3-2-1 納賽數經驗公式模型	37
3-2-2實驗數據之取得與分析計算流程	40
3-3 雙件式氣隔型薄膜蒸餾系統一維理論模型之建立	43
3-3-1雙件式氣隔型薄膜蒸餾系統一維理論模型	44
3-3-2理論數據取得與計算分析流程-朗吉庫塔數值解析方法	47
3-3-3系統水力損耗	51
3-4 數學模擬參數之設定	53
第四章 實驗分析	56
4-1 雙件式氣隔型薄膜蒸餾系統	56
4-2 實驗步驟	65
第五章 結果與討論	66
5-1 新型紊流促進因子之納賽數經驗公式迴歸分析	66
5-2 平板型氣隔式薄膜蒸餾系統	70
5-2-1 系統操作變因對於透膜通量之影響	70
5-2-2 溫度分佈與溫度極化現象	74
5-3添加紊流促進因子之雙件式氣隔型薄膜蒸餾系統	79
5-3-1 紊流促進因子對於透膜通量之影響	79
5-3-2 溫度分佈與溫度極化現象	90
5-4 模組設計參數於透膜通量與水力損耗之影響	94
5-4-1 透膜通量增益程度與水力損耗提升程度	94
5-4-2 透膜通量與水力損耗提升程度之比較	100
第六章 結論	103
6-1 新型紊流促進因子之納賽數經驗公式	104
6-2 平板型氣隔式薄膜蒸餾系統	104
6-3 添加紊流促進因子之雙件式氣隔型薄膜蒸餾系統	104
6-4 模組設計參數於透膜通量與水力損耗之影響	105
符號說明	106
參考文獻	113
 
圖目錄
圖1-1 海水淡化使用技術比例[7]	3
圖1-2 大規模海水淡化預期成本[8]	3
圖1-3 薄膜蒸餾之型態[10]	7
圖1-4 研究架構圖	11
圖3-1 氣隔式薄膜蒸餾系統熱量及質量傳送機制示意圖	21
圖3-2 薄膜蒸餾於薄膜內部之質量傳送阻力模式	24
圖3-3 氣隔式薄膜蒸餾系統之質量傳送阻力示意圖	28
圖3-4 氣隔式薄膜蒸餾系統之熱量傳送阻力串聯模式	28
圖3-5薄膜蒸餾於薄膜內部熱量傳送之阻力模式	30
圖3-6 溫度極化示意圖	34
圖3-7溫度極化現象改善示意圖[11]	36
圖3-8熱對流係數運算流程圖	42
圖3-9 雙件式氣隔型薄膜蒸餾系統示意圖	45
圖3-10朗吉庫塔法求聯立方程組之計算示意圖	49
圖3-11氣隔式薄膜蒸餾系統運算流程圖	50
圖4-1 雙件式氣隔型薄膜蒸餾系統簡圖	57
圖4-2 雙件式氣隔型薄膜蒸餾系統實驗設備圖(a)側視圖(b)正視圖	57
圖4-3 雙件式氣隔型薄膜蒸餾模組分解圖	60
圖4-4 壓克力板[(a) 正視圖 (b) 側視圖]	61
圖4-5 碳纖維板[(a) 正視圖 (b) 側視圖]	62
圖4-6 波浪型碳纖維板規格圖	63
圖4-7 碳纖維板實際圖[ (a) 3mm (b) 4mm (c) 5mm]	63
圖5-1-1 納賽數理論值與實驗值比較圖	69
圖5-2-1熱側流體為純水時,不同操作參數對於透膜通量之影響	71
圖5-2-2熱側流體為鹽水時,不同操作參數對於透膜通量之影響	72
圖5-2-3 熱流層側流體為鹽水時,不同體積流率 對主流區域、熱流層薄膜表面與冷凝液表面溫度分佈之影響	77
圖5-2-4 熱流層流體為鹽水時,不同操作參數於溫度極化係數之影響	78
圖5-3-1 熱流層為純水時,裝載波峰寬度3mm波浪型碳纖維板支撐條,不同操作參數對於透膜通量之影響理論圖	81
圖5-3-2熱流層為純水時,裝載波峰寬度4mm波浪型碳纖維板支撐條,不同操作參數對於透膜通量之影響理論圖	82
圖5-3-3熱流層為純水時,裝載波峰寬度5mm波浪型碳纖維板支撐條,不同操作參數對於透膜通量之影響理論圖	83
圖5-3-4 熱流層為鹽水時,裝載波峰寬度3mm波浪型碳纖維板支撐條,不同操作參數對於透膜通量之影響理論圖	84
圖5-3-5熱流層為鹽水時,裝載波峰寬度4mm波浪型碳纖維板支撐條,不同操作參數對於透膜通量之影響理論圖	85
圖5-3-6熱流層為鹽水時,裝載波峰寬度5mm波浪型碳纖維板支撐條,不同操作參數對於透膜通量之影響理論圖	86
圖5-3-7熱流層為鹽水時,裝載不同波浪型碳纖維板,不同操作條件下之透膜通量	87
圖5-3-8熱流層流體為鹽水時,不同碳纖維板支撐條寬度於主流區域與薄膜表面溫度分佈之影響	92
圖5-3-9 熱流層流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響	93
圖5-4-1不同模組設計參數之理論透膜通量增益程度 與水力損耗提升程度比較圖	101

 
表目錄
表1-1 全球水資源蘊含量分佈情形[2]	2
表1-2 不同操作型態之薄膜蒸餾應用領域[9]	8
表3-1經驗式參數表	37
表3-2 模組相關參數	53
表3-3 疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數	53
表3-4 流體相關參數	54
表3-5 流體相關參數式[67-70]	55
表4-1 PTFE/PP複合膜之薄膜性質	62
表4-2 碳纖維板之規格	63
表4-3 碳纖維板支撐條平均寬度之計算公式	64
表5-1-1 納賽數經驗公式所需實驗數據之操作變因表	67
表5-2-1氣隔式薄膜蒸餾系統實驗值與理論值之相對誤差表	73
表5-2-2 不同操作參數下於平均溫度極化係數之影響比較表	76
表5-3-1 純水操作下嵌入不同波浪型碳纖維板於氣隔式薄膜蒸餾系統,實驗值與理論值相對誤差比較表	88
表5-3-2 鹽水操作下嵌入不同波浪型碳纖維板氣隔式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	89
表5-4-1不同波浪型碳纖維板與操作參數下之純水理論透膜通量增益比例表	97
表5-4-2不同波浪型碳纖維板與操作參數下之鹽水理論透膜通量增益比例表	98
表5-4-3不同波浪型碳纖維板之水力損耗提升程度比較表	99
表5-4-4不同波浪型碳纖維板之理論透膜通量增益程度 與水力損耗提升程度比較表	102
參考文獻
1.	Meindersma, G.W., Guijt, C.M., de Haan, A.B., 2006, Desalination and water recycling by air gap membrane distillation, Desalination, 187 291-301.
2.	United Nation Population Fund, The Power of 1.8 Billion, United Nation Population Fund ,2014.
3.	United Nations Environment Programme, Global Environment Outlook 4, United Nations Environment Programme, 2007.
4.	Committee on Advancing Desalination Technology, National Research Council, Desalination: A National Perspective, National Academy of Sciences 2008.
5.	Andrew Maddocks, Roberts Samuel Young and Paul Reig, 2015, Ranking the World’s Most Water-Stressed Countries in 2040 ,World Resources Institute.
6.	Lattemann S., Kennedy M.D., Schippers J.C., Amy G., 2010, Chapter 2 Global desalination situation, Sustainability Science and Engineering, 2, 7-39 .
7.	Manjula Nair, Dinesh Kumar, 2012, Water desalination and challenges: The Middle East perspective: a review, Desalination and Water Treatment, 51, 2030-2040 .
8.	Meindersma, G. W., Guijt, C. M., & De Haan, A. B., 2006, Desalination and water recycling by air gap membrane, Desalination, 187, 291-301.
9.	El-Bourawi M.S., Ding Z, Ma R, Khayet MA., 2006, “A framework for better understanding membrane distillation separation process,” J. Membr. Sci., 285, 4–29.
10.	Asghari M., Harandizadeh A., Dehghani M., Harami H.R., 2015, Persian Gulf desalination using air gap membrane distillation: Numerical simulation and theoretical study, Desalination, 374, 92-100.
11.	Phattaranawik J., Jiraratananon R., Fane A.G., 2003, Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206.
12.	Bodell B.R., 1963, Silicone rubber vapor diffusion in saline water distillation, United States Patent Application Serial, 285, 32.
13.	Weyl P.K., 1967, Recovery of demineralized water form saline waters, United States Patent 3, 340, 186.
14.	Findley M.E., 1967, Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev., 6, 226-230.
15.	Drioli E., Wu Y., 1985, Membrane distillation:An experimental study, Desalination, 53, 339-346.
16.	Jönsson A.S., Wimmerstedt R., Harrysson A.-C., 1985, Membrane distillation - a theoretical study of evaporation through microporous membranes, Desalination, 56, 237-249.
17.	Schofield R.W., Fane A.G., Fell C.J.D., 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299-313.
18.	Lawson, K. W., & Lloyd, D. R., 1997, Membrane distillation. Journal of membrane Science,124(1), 1-25.
19.	Izquierdo-Gil M.A., Garcı́a-Payo M.C., Fernández-Pineda C., 1999, Air gap membrane distillation of sucrose aqueous solutions, J. Membr. Sci., 155, 291-307.
20.	Izquierdo-Gil M.A., Garcı́a-Payo M.C., 2000, Fernández-Pineda C., Air gap membrane distillation of aqueous alcohol solutions, J. Membr. Sci., 169, 61-80.
21.	Phattaranawik J., Jiraratananon R., 2001, Direct contact membrane distillation:effect of mass transfer on heat transfer, J. Membr. Sci., 188, 137-143.
22.	Alklaibi A.M., Lior N., 2005, Transport analysis of air-gap membrane
distillation, J. Membr. Sci., 255, 239-253.
23.	Alklaibi A.M., Lior N., 2006, Heat and mass transfer resistance analysis of membrane distillation, J. Membr. Sci., 282, 362-369.
24.	Chen, T.C., Ho, C.D., Yeh, H.M., 2009, Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Membr. Sci., 330 279-287.
25.	Schofield, R.W., Fane, A.G., Fell, C.J.D. , 1990, Gas and vapour transport through microporous membranes. II. Membrane distillation, J. Membr. Sci., 53 173-185.
26.	Alsaadi, A.S., Ghaffour, N., Li, J.-D., Gray, S., Francis, L., Maab, H., Amy, G.L., 2013, Modeling of air-gap membrane distillation process:a theoretical and experimental study, J. Membr. Sci., 445, 53-65.
27.	Gryta, M., Tomaszewska, M., Morawski, A.W., 1997, Membrane distillation with laminar flow, Sep. Purif. Technol., 11, 93-101.
28.	Martínez-Díez, L., Vázquez-González, M.I.., 1998, Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37, 4128-4135.
29.	Phattaranawik, J., Jiraratananon, R., Fane AG. 2003, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212, 177-193.
30.	Khayet, M., Godino, M.P., Mengual, J.I., 2003, Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method, Desalination, 157, 297-305.
31.	Bui, V.A., Vu, L.T.T., Nguyen, M.H., 2010, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85-93.
32.	Lawson, K.W., Lloyd, D.R., 1996, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123-133.
33.	Srisurichan, S., Jiraratananon, R., Fane, A.G., 2006, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci., 277, 186-194.
34.	Gryta, M., Tomaszewska, M., 1998, Heat transport in the membrane distillation process., J. Membr. Sci., 144, 211-222.
35.	Zhongwei, D., Liying, L., Runyu, M., 2003, Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215, 11-23.
36.	Fernández-Pineda, C., Izquierdo-Gil, M.A., García-Payo, M.C., 2002, Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci., 198, 33-49.
37.	Martínez-Díez, L, Vázquez-González, M.I., Florido-DõÂaz, F.J., 1998, Study of membrane distillation using channel spacers, J. Membr. Sci., 144, 45-56.
38.	Phattaranawik, J, Jiraratananon, R, Fane, A.G., Halim, C., 2001, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187, 193-201.
39.	Da Costa, A.R., Fane, A.G., Fell, C.J.D., Franken, A.C.M., 1991, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62, 275-291.
40.	Da Costa, A.R., Fane, A.G., Wiley, D.E., 1994, Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87, 79-98.
41.	Shakaib, M., Hasani, S. M. F., Ahmed, I., Yunus, R.M., 2012, A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules, Desalination, 284 332-340.
42.	Ho, C.D., Chang, H., Chang, C.L., Huang, C.H., 2013, Theoretical and experimental studies of flux enhancement with roughened surface in direct contact membrane distillation desalination, J. Membr. Sci., 433 160-166.
43.	Alklaibi, A.M., Lior, N., 2005, Transport analysis of air-gap membrane distillation, J. Membr. Sci., 255, 239-253.
44.	Schofield, R.W., Fane, A.G., Fell, C.J.D., 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299-313.
45.	Liu, G.L., Zhu, C., Cheung, C.S., Leung, C.W., 1998, Theoretical and experimental studies on air gap membrane distillation, Int. J. Heat Mass Transf., 34, 329-335.
46.	Lawson, K.W., Lloyd, D.R., 1997, Membrane distillation, J. Membr. Sci., 124, 1-25.
47.	Izquierdo-Gil, M.A., Garcı́a-Payo, M.C., Fernández-Pineda, C., 1999, Air gap membrane distillation of sucrose aqueous solutions, J. Membr. Sci., 155, 291-307.
48.	Shakaib, M., Hasani, S. M. F., Ahmed, I., Yunus, R.M., 2012, A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules, Desalination, 284, 332-340.
49.	Geng, H., Wu, H., Li, P., He, Q., 2014, Study on a new air-gap membrane distillation module for desalination, Desalination, 334, 29-38.
50.	Iversen, S.B., Bhatia, V.K., Dam-Jphasen, K., Jonsson, G., 1997, Characterization of microporous membranes for use in membrane contactors, J. Membr. Sci., 130, 205-217.
51.	Phattaranawik, J., Jiraratananon, R., 2001, Direct contact membrane distillation:effect of mass transfer on heat transfer, J. Membr. Sci., 188, 137-143.
52.	Fuller, E.N., Schettler, P.D., Giddings, J.C., 1966, New method for prediction of binary gas-phase diffusion coefficients, Industrial & Engineering Chemistry, 58, 18-27.
53.	Alsaadi, A.S., Ghaffour, N., Li, J.-D., Gray, S., Francis L., Maab, H., Amy, G.L., 2013, Modeling of air-gap membrane distillation process:a theoretical and experimental study, J. Membr. Sci., 445, 53-65.
54.	Sarti, G.C., Gostoli, C., Matulli, S., 1985, Low energy cost desalination processes using hydrophobic membranes, Desalination, 56, 277-286.
55.	Bouguecha, S., Chouikh, R., Dhahbi, M., 2003, Numerical study of the coupled heat and mass transfer in membrane distillation, Desalination, 152, 245-252.
56.	Banat, F.A., Simandl, J., 1999, Membrane distillation for dilute ethanol Separation from aqueous streams, J. Membr. Sci., 163, 333-348.
57.	Incropera, F.P., DeWitt, D.P., 1996, Fundamentals of Heat and Mass Transfer, fourth ed., New York:John Wiley & Sons Inc.
58.	Schofield, R.W., Fane, A.G., Fell C.J.D., 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299-313.
59.	Izquierdo-Gil, M.A., Garcı́a-Payo, M.C., 2000, Fernández-Pineda C., Air gap membrane distillation of aqueous alcohol solutions, J. Membr. Sci., 169, 61-80.
60.	Saini, R.P., Saini, J.S., 1997 ,Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element, Int. J. Heat Mass Transf., 40, 973-986.
61.	Welty, J.R., Wick, C.E., Wilson, R.E., 1984, Fundamentals of Momentum, Heat and Mass Transfer, third ed. John Wiley & Sons, New York.
62.	Satish, G., Kandlika, Derek Schmitt., 2005, Characterization of surface roughness effect in pressure drop in single-phase flow in minichannels, PHYSICS OF FLUIDS, 17, 100606.
63.	Bird, R.B., Stewart, W.E., Lightfoot, E.N. 2007, Transport Phenomena, second ed., John Wiley & Sons, New York.
64.	Sharqawy, M. H., 2013, New correlations for seawater and pure water thermal conductivity at different temperatures and salinities, Desalination, 313, 97-104.
65.	Incropera, FP, DeWitt, DP., 1996, Fundamentals of Heat and Mass Transfer. fourth ed., New York: John Wiley & Sons Inc.,.
66.	Chenlo, F., Moreira, R., Pereira, G., Ampudia, A., 2002, “Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes,” J. Food Eng., 54, 347-352.
67.	Magalhães, M.C.F., Königsberger, E., May, P.M., Hefter, G., 2002, “Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C,” J. Chem. Eng. Data, 47, 590-598.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信