§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1707201518583600
DOI 10.6846/TKU.2015.00483
論文名稱(中文) 脫硫渣與電弧爐氧化渣去除磷之比較
論文名稱(英文) Comparison of Phosphate removal by desulfurization and electric arc furnace slags
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 楊佳穎
研究生(英文) Chia-Ying Yang
學號 603480053
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-24
論文頁數 84頁
口試委員 指導教授 - 康世芳
委員 - 柯明賢
委員 - 李柏青
關鍵字(中)
脫硫渣
電弧爐氧化渣
等溫吸附模式
動力吸附模式
關鍵字(英) Phosphate
Desulfurization slag
Electric arc furnace slag
Freundlich adsorption isotherm
Adsorption kinetic
第三語言關鍵字
學科別分類
中文摘要
本研究探討爐渣去除含磷,脫硫渣(desulfurization slag, DS)與電弧爐氧化渣(electric arc furnace slag, EAF)分別取自中國鋼鐵公司與中龍鋼鐵公司,採等溫吸附實驗探討DS與EAF去除水中磷,吸附操作參數包含DS與EAF添加量、pH及接觸時間等。吸附實驗結果以Freundlich等溫吸附公式、Lagergern 擬二階(Pseudo-second-order)動力與內部孔隙擴散速率(Intraparticle diffusion model)模式評估吸附水中磷之動力。此外,測定DS與EAF之化學成份組成、表面特性及比表面積。
研究結果顯示DS化學成份組成鈣之重量百分比與比表面積分別為25.9%與10.79 m2/g , EAF則為19.9%與 0.97 m2/g。DS於水中會溶出鈣且pH大於10,與磷形成Ca5(PO4)3(OH) (s) (hydroxyapatite, HAP) 沉澱物,且DS之鈣溶出量為EAF之約12-18倍。因DS比表面積與鈣溶出量皆甚大EAF,故DS去除磷能力約為EAF之189倍。DS與EAF去除磷最適pH為10,SEM亦顯示DS與EAF表面有HAP沉澱物。由於DS之鈣溶出量高可形成HAP沉澱物,故去除磷主要機制為沉澱;相對地,EAF之鈣溶出量低,磷初始濃度高時無足夠鈣生成HAP,故去除磷主要機制為吸附。DS及EAF對磷吸附遵循Freundlich等溫吸附,DS之Freundlich常數KF值大於EAF;動力吸附則遵循Lagergren擬二階動力吸附與內部孔隙擴散模式,DS之平衡吸附量(qe)與內部孔隙擴散速率(ki)值皆大於EAF。綜合結果顯示DS去除磷能力優於EAF。
英文摘要
This study evaluates the adsorption removal of phosphate from aqueous solution by slags. Desulfurization slag (DS) and electric arc furnace slag (EAF) sampled from The China steel company and Dragon Steel company, respectively, were used to treat phosphate-containing synthetic water. The operational parameters include, and dosage of DS and EAF slags, initial concentration of phosphate, pH and contact time. All experiments were conducted by the isotherm adsorption test. The adsorption kinetic of phosphate by slags were evaluated by the Freundlich isotherm, the Lagergern pseudo-second-order and Intraparticle diffusion models. Furthermore, the chemical composition, surface morphology and specific surface area were measured. 
The results show that chemical composition of Ca (wt%) and specific surface area of DS were 25.9% and 10.79 m2/g, respectively, and those were 19.9% and 0.97 m2/g for EAF. DS released Ca ions and induced pH of slag solution above 10. The released Ca ions could react with phosphate to form Ca5(PO4)3(OH)(s) (hydroxyapatite, HAP) precipitates to remove phosphate. The amount of released Ca ions of DS was about 12-18 times of that for EAF. Due to the specific surface area and amount of released Ca ions of DS were great larger than those of EAF, the phosphate removal capacity of DS is about 189 times of EAF. The optimum pH for phosphate removal is about 10 and SEM examination showed that HAP precipitates onto surface of both DS and EAF. The phosphate removal of DS is dominated by precipitation because DS releases higher Ca ions to form HAP precipitates. In contrast, phosphate removal of EAF is dominated by adsorption due to the released Ca ions being not enough to form HAP precipitates for higher initial phosphate solution. The adsorption of phosphate by DS and EAF followed the Freundlich adsorption isotherm model. The adsorption capacity (KF) value of DS was larger than that of EAF.  Moreover, the adsorption kinetic of phosphate by DS and EAF well followed pseudo-second-order and intraparticle diffusion models. Both of equilibrium adsorption capacity (qe) and intraparticle diffusion rate constant (ki) values of DS were larger than those of EAP.  It is concluded that phosphate removal capacity of DS was better than that of EAF.
第三語言摘要
論文目次
目錄
目錄	I
表目錄	IV
圖目錄	V
第一章、	前言1
1.1研究緣起1
1.2研究目的3
第二章、	文獻回顧	4
2.1磷的性質、來源及限制4
2.1.1 磷的來源、性質4
2.1.2 磷的水化學	5
2.1.3 磷對水環境與人體的危害6
2.1.4 磷之去除方法6
2.1.5 國、內外水質標準磷之限值7
2.2脫硫渣與電弧爐氧化渣之來源、特性及應用8
2.2.1 一貫作業煉鋼製程8
2.2.2 脫硫渣產出特性及應用10
2.2.3 電弧爐氧化渣產出特性及應用11
2.2.4 煉鋼爐渣的性質13
2.3吸附原理15
2.3.1 Langmuir 等溫吸附模式16
2.3.2 Freundlich等溫吸附模式17
2.3.3 Brunaur-Emmett-Teler (BET)等溫吸附模式18
2.3.4 動力吸附模式19
2.3.5 孔隙擴散模式21
2.4煉鋼爐渣吸附之應用現況22
第三章、	實驗材料與方法24
3.1材料及設備24
3.1.1 吸附劑與含磷人工水樣之配製24
3.1.2 實驗藥品24
3.1.3 實驗設備25
3.2DS與EAF之物化特性分析實驗26
3.2.1 SEM/EDS分析26
3.2.2 XRD分析26
3.2.3 比表面積分析26
3.2.4 鈣溶出實驗	27
3.3吸附實驗28
3.3.1 等溫吸附實驗28
3.3.2 等溫動力吸附實驗28
3.3.3 沉澱與吸附機制驗證去除實驗29
3.4水質分析31
第四章、	結果與討論33
4.1	煉鋼爐渣表面顯微特性33
4.1.1	煉鋼爐渣SEM/EDS33
4.1.2	煉鋼爐渣化學成分組成36
4.1.3	煉鋼爐渣比表面積37
4.2	DS與EAF水溶液化學特性38
4.2.1	DS與EAF接觸時間對水中鈣溶出、導電度與pH之影響38
4.2.2	DS與EAF添加量對水中鈣溶出、導電度與pH之影響	40
4.3	DS與EAF對去除磷之影響因子	42
4.3.1	接觸時間對DS與EAF去除磷之影響42
4.3.2	磷初始濃度對等溫吸附之影響	46
4.3.3	DS與EAF添加量對去除磷之影響49
4.3.4	DS與EAF對磷吸附量之比較51
4.3.5	DS與EAF對去除磷之比較52
4.3.6	pH對DS與 EAF去除磷之影響54
4.4	DS與EAF去除磷機制之比較58
4.5	DS與EAF吸附磷之Freundlich等溫吸附64
4.6	DS與EAF吸附磷之動力吸附67
4.6.1	DS與EAF添加量對吸附磷Lagergren擬二階吸附之影響67
4.6.2	pH對DS與EAF吸附磷之擬二階吸附影響70
4.6.3	DS與EAF添加量對吸附磷之孔隙擴散模式之影響74
4.6.4	pH對DS與EAF吸附磷之孔隙擴散模式影響76
第五章、結論79
參考文獻	80

 
表目錄	
表 2.1 EAF實驗數據整合23
表 4.1 DS與EAF磷吸附前後之元素組成	36
表 4.2 EAF與DS之比表面積分析37
表 4.3 DS去除磷機制之比較	59
表 4.4 EAF去除磷機制之比較61
表 4.5 DS與EAF吸附磷之Freundlich 等溫吸附	64
表 4.6 DS添加量對吸附磷之擬二階動力吸附之影響(P= 10 mg/L)68
表 4.7 EAF添加量對吸附磷之擬二階動力吸附之影響(P= 10 mg/L)69
表 4.8 pH對DS吸附磷之擬二階動力吸附之影響71
表 4.9 pH對EAF吸附磷之擬二階動力吸附之影響73
表 4.10 DS、EAF添加量對吸附磷之孔隙擴散吸附之影響(P= 10 mg/L)74
表 4.11 pH對DS及EAF吸附磷之孔隙擴散吸附之影響( P= 20 mg/L)77


 
圖目錄
圖 2.1 pH對磷水化學物種分佈之影響5
圖 2.2轉爐石生產流程(中鋼,2005)9
圖 3.1 吸附實驗流程圖30
圖 3.2 磷濃度與吸光值之檢量線 31
圖 4.1 DS與EAF磷吸附前後之SEM 34
圖 4.2 DS與EAF磷吸附前後之EDS 35
圖 4.3接觸時間對DS與EAF水中鈣溶出之影響39
圖 4.4接觸時間對DS與EAF水中導電度之影響39
圖 4.5 DS添加量對水中鈣溶出、導電度與pH之影響(t=120 min)41
圖 4.6 EAF添加量對水中鈣溶出、導電度與pH之影響(t=120 min)41
圖 4.7 接觸時間對DS吸附磷之影響 (P=20 mg/L)43
圖 4.8 接觸時間對DS吸附磷之吸附量影響(P=20 mg/L)43
圖 4.9 接觸時間對EAF吸附磷之影響 (P=10 mg/L)44
圖 4.10接觸時間對EAF吸附磷之吸附量影響 (P=10 mg/L)45
圖 4.11磷初始濃度對DS吸附磷之影響47
圖 4.12磷初始濃度對DS吸附量之影響47
圖 4.13 磷初始濃度對EAF吸附磷之影響48
圖 4.14 DS與EAF對去除磷之影響(P=20 mg/L、t=120 min)50
圖 4.15 DS與EAF對吸附量之影響(P=20 mg/L、t=120 min)51
圖 4.16 DS與EAF添加量對磷殘留率之比較(P=20 mg/L、t=120 min)53
圖 4.17 DS與EAF添加量對磷殘留率之比較(P=10 mg/L、t=120 min)53
圖 4.18 pH對DS去除磷之影響 (DS=500 mg/L、P=20 mg/L)55
圖 4.19 pH對EAF去除磷之影響 (EAF=20,000 mg/L、P=20 mg/L)55
圖 4.20 pH對DS與EAF吸附去除磷之影響57
圖 4.21 DS去除磷機制之比較 (DS=500 mg/L)60
圖 4.22 DS表面吸附與沉澱去除磷之吸附量比較(DS=500 mg/L)60
圖 4.23 EAF去除磷機制之比較(EAF=10,000 mg/L)62
圖 4.24 EAF表面吸附與沉澱去除磷之吸附量比較(EAF=10,000 mg/L)62
圖4.25 磷酸鈣之XRD晶物圖譜63
圖 4.26 初始濃度對DS吸附磷之Freundlich等溫吸附65
圖 4.27 DS吸附磷之Freundlich等溫吸附(P=10mg/L)65
圖 4.28 EAF吸附磷之Freundlich等溫吸附(P=10mg/L)	66
圖 4.29 DS添加量對吸附磷之擬二階動力吸附之影響( P= 10 mg/L)68
圖 4.30 EAF添加量對吸附磷之擬二階動力吸附之影響( P= 10 mg/L)69
圖 4.31 pH對DS吸附磷之擬二階動力吸附之影響71
圖 4.32 pH對EAF吸附磷之擬二階動力吸附之影響73
圖 4.33 DS添加量對吸附磷之孔隙擴散吸附之影響( P= 10 mg/L)75
圖 4.34 EAF添加量對吸附磷之孔隙擴散吸附之影響( P= 10 mg/L)75
圖 4.35 pH對DS吸附磷之孔隙擴散吸附之影響78
圖 4.36 pH對EAF吸附磷之孔隙擴散吸附之影響78
參考文獻
1.Agyei N. M., C.A. Strydom, J.H. Potgieter, (2002) The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cement Concrete Research 32 1889–1897.
2.Barca C., Claire Ge′rente, Daniel Meyer, Florent Chazarenc, Yves Andre`s, (2012) Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research 46, 2376-2384.
3.Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., et al. (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering, 68(0), 214-222.
4.Barca, C., Troesch, S., Meyer, D., Drissen, P., Andreìs, Y., and Chazarenc, F. (2013). Steel slag filters to upgrade phosphorus removal in constructed wetlands: Two years of field experiments. Environmental Science and Technology, 47(1), 549-556.
5.Bhatnagar A., Choi Y., Yoon Y., Shin Y., Jeon B.H. and Kang J.W. (2009) Bromate removal from water by granular ferric hydroxide (GFH). Journal of hazardous materials 170, 134-140.
6.Bowden, L. I., Jarvis, A. P., Younger, P. L., and Johnson, K. L. (2009). Phosphorus removal from waste waters using basic oxygen steel slag. Environmental Science and Technology, 43(7), 2476-2481. 
7.Boyer T. H., Persaud A., Banerjee P. and Palomino P., (2011) Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water, Water Research, 45, 4803-4814.
8.Cha, W., Kim, J., and Choi, H. (2006). Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Research, 40(5), 1034-1042.
9.Chakraborty, A., Sengupta, A., Bhadu, M. K., Pandey, A.,  and Mondal, A. (2014). Efficient Removal of Arsenic (V) from Water Using Steel-Making Slag. Water Environment Research, 86(6), 524-531.
10.Cheung W.H., Szeto Y.S. and Mckay G., (2007) Intraparticle diffusion prodesses during acid dye adsorption onto chitosan. Bioresource Technology, 98, 2897-2904.
11.Claveau-Mallet D, Wallace S. and Comeau Y., (2011) Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters. Environmental Science and Technology 46, 1465-1470.
12.Claveau-Mallet D, Wallace S. and Comeau Y., (2013) Removal of phosphorus, fluoride and metal from a gypsum mining leachate using steel slag filters, Water Research 47, 1512-1520.
13.Drizo, A., Forget, C., Chapuis, R.P., Comeau, Y., (2002) Phosphorus removal by EAF steel slag–A parameter for the estimation of the longevity of constructed wetland systems. Environmental Science and Technology 36, 4642–4648.
14.Drizo, A., Forget, C., Chapuis, R.P., Comeau, Y., (2006) Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research 40 (8), 1547e1554.
15.Duan J. and Su B., (2014) Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal, 246, 160-167.
16.Han, C., Wang, Z., Yang, H., and Xue, X. (2015). Removal kinetics of phosphorus from synthetic wastewater using basic oxygen furnace slag. Journal of Environmental Sciences, 30, 21-29.
17.Ho Y.S., (2006) Review of second-order models for adsorption systems, Journal of Hazardous Materials, B136, 681-689.
18.Ho Y.S., (2006) Second-order kinetic model for sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Research, 40,119-125.
19.Jha, V.K., Kameshima, Y., Nakajima, A., Okada, K., (2008) Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials 156 (1-3), 156-162.
20.Johansson L., J.P. Gustafsson, (2000) Phosphate removal using blast furnace slags and opoka-mechanisms, Water Research 34, 259–265.
21.Johansson Westholm, L. (2006) Substrates for phosphorus removal - Potential benefits for on-site wastewater treatment? Water Research 40 (1), 23-36.
22.Kim D.H, Shih M.C. Choi H.C.D. Seo C.I. and Baek K. (2008) Removal mechanisms of copper using steel-making slag: Adsorption and precipitation. Desalination, 223, 283-289
23.Kim, E.H., Lee, D.W., Hwang, H.K., Yim, S., (2006a) Recovery of phosphates from wastewater using converter slag: kinetics analysis of a completely mixed phosphorus crystallization process. Chemosphere 63 (2), 192-201.
24.Kim, E.H., Yim, S., Jung, H., Lee, E., (2006b) Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material. Journal of Hazardous Materials 136 (3), 690-697.
25.Kostura, B., Kulveitová, H., and Leško, J. (2005). Blast furnace slags as sorbents of phosphate from water solutions. Water Research, 39(9), 1795-1802.
26.Kumar E., Bhatnagar A., Choi J.A., Kumar U., Min B., Kim Y., Song H., Paeng K.J., Jung Y.M., Abou-Shanab R.A.I. and Jeon B.H. (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research 3 , 490–498
27.Li Y, Liu C, and Chiou C., (2003) Decolorization of Acid Blue 9 Dye Wastewater Using Waste Furnace Slag, Bulletin of Environmental Contamination and Toxicology, 70, Issue 6, 1112-1120.
28.Li, L., and Stanforth, R. (2000). Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH). Journal of Colloid and Interface Science, 230(1), 12-21.
29.Li, Y. S., Chiou, C. S. and Shieh, Y. S., (2000) Adsorption of acid black wastewater by basic oxygen furnace slag. Bulletin of Environmental Contamination and Toxicology, 64, 659-665.
30.Lu S.G., Bai S.Q., Zhu L. and Shan H.D. (2009) Removal mechanism of phosphate from aqueous by fly ash. Journal of Hazardous Materials, 161, 95-101.
31.Mangwandi, C., Albadarin, A. B., Glocheux, Y.,  and Walker, G. M. (2014). Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. Journal of Environmental Chemical Engineering, 2(2), 1123-1130.
32.Naiya T.K., Bhattacharya A.K., and Das S.K., 2009, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Jour. Colloid and Interface Science, 333, 14-26.
33.Okochi N.C. and McMartin D.W., (2011) Laboratory investigations of stormwater remediation via slag: effects of metals on phosphorus removal. Journal of Hazardous Materials 187, 250-257.
34.Peleka, E. N., and Deliyanni, E. A. (2009). Adsorptive removal of phosphates from aqueous solutions. Desalination, 245(1–3), 357-371.
35.Pratt, C. and A. Shilton, (2010) Active slag filters-simple and sustainable phosphorus removal from wastewater using steel industry byproduct. Water Science and Technology 62(8), 1713-1718. 
36.Pratt, C., Shilton, A., Haverkamp, R. G.,  and Pratt, S. (2009). Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater. Water Research, 43(2), 277-282. 
37.Pratt, C., Shilton, A., Pratt, S., Haverkamp, R. G.,  and Bolan, N. S. (2007). Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent. Environmental Science and Technology, 41(9), 3296-3301.
38.Pratt, C., Shilton, A., Pratt, S., Haverkamp, R. G.,  and Elmetri, I. (2007). Effectss of redox potential and pH changes on phosphorus retention by melter slag filters treating wastewater. Environmental Science and Technology,41(18), 6585-6590.
39.Shilton, A. N., Elmetri, I., Drizo, A., Pratt, S., Haverkamp, R. G.,  and Bilby, S. C. (2006). Phosphorus removal by an 'active' slag filter-a decade of full scale experience. Water Research, 40(1), 113-118. 
40.Sibrella, P. L., G. A. Montgomerya, K. L. Ritenoura, T. W. Tuckerb, (2009) Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge, Water Research 43, 2240 – 2250.
41.Song, X., Pan, Y., Wu, Q., Cheng, Z., and Ma, W. (2011). Phosphate removal from aqueous solutions by adsorption using ferric sludge. Desalination, 280(1–3), 384-390. 
42.Wang, G., Wang, Y., Gao, Z., (2010) Use of steel slag as a granular material: volume expansion prediction and usability criteria. Journal of Hazardous Materials 184 (1-3), 555-560.
43.Wu, Q., You, R., Clark, M.,  and Yu, Y. (2014). Pb (II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag. Applied Surface Science, 314, 129-137.
44.Xiong J.B. and Mahmood (2010) Adsorptive removal of phosphate from aqueous media by peat. Desalination, 259, 59-64.
45.Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X.,  and Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152(1), 211-215.
46.Xiong, J., Qin, Y., Islam, E., Yue, M.,  and Wang, W. (2011). Phosphate removal from solution using powdered freshwater mussel shells. Desalination, 276(1–3), 317-321.
47.Xue y., Hou h., and Shujing Zhu S., (2009) Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study, Chemical Engineering Journal, 147( 2–3), 272–279.
48.Xue, Y., Hou, H., and Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 162(2–3), 973-980. 
49.Xue, Y., Hou, H., and Zhu, S. (2009). Adorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study. Chemical Engineering Journal, 147, 272-279.
50.	Xue, Y., Wu, S.,  and Zhou, M. (2013). Adsorption characterization of cu(II) from aqueous solution onto basic oxygen furnace slag. Chemical Engineering Journal, 231(0), 355-364. 
51.Yan Y., Sun X., Ma F., Li J., Shen J. and Han W., Liu X. and Wang L., (2014) Removal of phosphate from wastewater using alkaline residue. Journal Environmental Sciences, 26, 970-980.
52.Zhao, X. H., and Zhao, Y. Q. (2009). Investigation of phosphorus desorption from P-saturated alum sludge used as a substrate in constructed wetland. Separation and Purification Technology, 66(1), 71-75.
53.Zhu X. and Jyo, A. (2005). Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 39(11), 2301-2308.
54.中鋼公司,2013,”民國102年企業永續報告書” 。
55.中鋼集團,2005,”爐石利用推廣手冊”。
56.刑金池,2004,”電弧爐氧化碴資源化利用研究”,國立臺北科技大學材料及資源工程研究所碩士論文。
57.李敏菱,2011,”利用轉爐石粉料處理含銅廢水之研究”,臺北科技大學資源工程研究所學位論文。
58.林巧雯,2011,”利用牡蠣殼粉等溫吸附磷之研究”,農業工程學報,57(3), 32-43。
59.張高僑,2008,”鈣系爐渣封存二氧化碳行為之研究”,成功大學環境工程學系學位論文。
60.黃昭貴,2005,”含磷污泥與鋁鹽污泥之共調理脫水”,國立台灣科技大學化學工程學系碩士論文。
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信