淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1707201316470900
中文論文名稱 利用第一原理分子動態模擬探討pyridine吸附於銀團簇與4,4'-bipyridine分子接面的表面增強拉曼光譜之理論研究
英文論文名稱 Theoretical studies of surface-enhanced Raman spectra of pyridine adsorbed on silver cluster and 4,4'-bipyridine molecular junction based on ab initio molecular dynamics simulations
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 101
學期 2
出版年 102
研究生中文姓名 蘇仁屏
研究生英文姓名 Jen-Ping Su
學號 600160021
學位類別 碩士
語文別 英文
口試日期 2013-06-20
論文頁數 101頁
口試委員 指導教授-林志興
委員-吳天鳴
委員-許昭萍
委員-鄭原忠
中文關鍵字 第一原理分子動態模擬  密度泛涵理論  表面增強拉曼光譜  靜態化學增強機制  吡啶  單分子接面  4,4’-聯吡啶  電荷轉移 
英文關鍵字 Ab Initio Molecular Dynamics  Density Functional Theory  SIESTA  Surface-Enhanced Raman Spectrum  Pyridine  Static Chemical Enhancement  4,4’-Bipyridine  Molecular Junction  Charge Transfer 
學科別分類 學科別自然科學化學
中文摘要 根據第一原理分子動態模擬搭配極化率自動相關函數(polarizability autocorrelation function)與其傅利葉轉換(Fourier transform)建立表面增強拉曼光譜(surface enhanced Raman scattering,SERS),探討(1)吡啶吸附於銀團簇表面增強拉曼光譜的靜態化學增強機制及(2)4,4’-聯吡啶分子接面在不同導電態的SERS光譜。

第一部份中模擬了吡啶吸附於銀團簇於室溫的SERS光譜,並透過我們所開發的單頻濾波器(single-frequency-pass filter,SFPF)成功解析光譜上五個增強的拉曼訊號,包括υ6a、υ1、υ12、υ9a及υ8a。根據分析結果,分子吸附後部份電荷轉移至金屬,造成吡啶環上的鍵軟化(bond softening),進而導致分子振動振幅增加。此外,吸附後所生成之氮-銀鍵的振動會與此五個分子振動模式耦合。最後,振動所促成的分子與金屬間電荷轉移,使吡啶在振動時伴隨著本身電荷密度的變化。這些因素使得吡啶振動時的極化率改變量有顯著的增加,因而導致拉曼訊號的增強。

第二部分中,4,4’-聯吡啶分子接面的模擬SERS光譜顯示導電態的光譜訊號比非導電態的增強效應高10~102倍。而訊號的相對強度方面,由於同時來自振動結構、振動耦合及電荷轉移因素的貢獻,在非導電態SERS光譜上的吡啶環呼吸運動的訊號有最大的增強效應。在導電態的SERS光譜上,由於振動結構及電荷轉移因素的貢獻,C-H 彎曲運動有最強的增強效應。此外,我們模擬了直立與傾斜的導電態4,4’-聯吡啶分子接面,並嘗試探討電荷在金屬間透過分子振動的傳遞機制。根據分析結果,我們觀察到了三種機制,包括(1)金屬之間一步電荷轉移、(2)金屬之間兩步電荷轉移、(3)金屬與分子之間的電荷交換。
英文摘要 The simulated surface enhanced Raman scattering (SERS) spectra are calculated by using ab initio molecular dynamics (AIMD) simulations in connection with a Fourier transform of the polarizability autocorrelation function to investigate (1) the static chemical enhancement behind the SERS spectrum of pyridine adsorbed on Ag20 cluster and (2) the SERS spectra of 4,4’-bipyridine molecular junction in different conductance states.

The simulated SERS spectrum of pyridine adsorbed on Ag20 cluster (pyridine-Ag20) at room temperature reproduces all five enhanced vibrational modes, υ6a, υ1, υ12, υ9a, and υ8a, of pyridine, which can be assigned and identified by using the new analytical scheme, namely, single-frequency-pass filter (SFPF) based on the Fourier transform filtering technique. The calculated results indicate that the vibrational amplitudes of adsorbed pyridine are enhanced due to the electron transfer from pyridine to Ag¬20 cluster and the softening of pyridine bond. Furthermore, the N-Ag stretching of pyridine-Ag20 will couple with these five vibrational modes of adsorbed pyridine. Consequently, the charge transfer between pyridine and Ag20 cluster induced by different molecular vibrational modes prompts the redistribution of electron density of pyridine. These factors collectively cause the noticeable change in polarizability during the molecular vibrations and result in the enhancement of Raman peaks.

The simulated SERS spectra of 4,4’-bipyridine/gold single molecule junction in different conductance states show that the Raman peaks of ON state are enhanced by an additional one or two order of magnitude in comparison with OFF state. Considering the relative intensities of SERS spectra, the largest enhanced peak for OFF state is ring breathing mode due to the simultaneous contribution from structural change, vibrational coupling, and charge transfer. For ON state, the C-H bending mode has the largest enhancement due to structural change and charge transfer effects. In addition, 4,4’-bipyridine junction in the ON state with perpendicular and tilted orientations are examined for understanding the electron transport across the junction induced by different molecular vibrations. As a result, three types of mechanisms for charge transfer can be observed including (1) one-step and (2) two-step charge transfer from one Au4 cluster to another and (3) charge exchange between 4,4’-bipyridine and two Au4 clusters.
論文目次 Chapter 1 Introduction 1

Chapter 2 Theoretical background 6
2-1 Electronic calculation 6
2-1-1 Density functional theory 6
2-1-2 Exchange-correlation energy 9
2-1-3 Pseudopotentails 11
2-2 Molecular dynamics simulation 13
2-2-1 Ab initio molecular dynamics 14
2-2-2 Connection to thermodynamic variables 17
2-2-3 Ensemble 18
2-3 Normal mode analysis 21
2-4 SIESTA method 24
2-4-1 Pseudopotential 24
2-4-2 Basis set 25
2-4-3 Electron Hamiltonian 26
2-4-4 Total energy 27
2-4-5 External electric field 28

Chapter 3 Simulation of Raman Spectrum 29
3-1 Raman differential scattering cross section 29
3-2 Convolution and correlation function 35
3-3 Simulated Raman spectrum 38
3-3-1 Computing Raman spectrum from molecular dynamics simulation 38
3-3-2 Vibrational modes assignment 41
3-3-3 Fourier transforms of structural coordinate and charge autocorrelation functions 44

Chapter 4 Chemical mechanism of surface-enhanced Raman spectrum of pyridine adsorbed on silver cluster 46
4-1 Introduction 46
4-2 Computational details 51
4-3 Results and discussion 52
4-3-1 Calculated ground state properties 52
4-3-2 Calculated Raman and SERS spectra 54
4-3-3 Enhanced mechanism behind the SERS spectra 58
4-4 Conclusion 67

Chapter 5 Surface-enhanced Raman spectra of 4,4'-bipyridine molecular junction in different conductance states 69
5-1 Introduction 69
5-2 Computational details 73
5-3 Results and discussion 75
5-3-1 Calculated ground state properties 75
5-3-2 Calculated Raman and SERS spectra and vibrational modes assignment 76
5-3-3 SERS spectra of the junctions in different states 81
5-3-4 Electron transport properties of molecular junction with perpendicular and tilted orientations 88
5-4 Conclusion 96

Reference 98
參考文獻 [1] K. Kneipp, J. Flemming J. Mol. Struct. 1986, 145, 173.
[2] I. R. Nabiev, K. V. Sokolov, O. N. Voloshin J. Raman Spectrosc 1990, 21, 333.
[3] K. Kneipp, W. Pohle, H. Fabian J. Mol. Struct. 1991, 244, 183.
[4] X. Dou, T. Takama, Y. Yamaguchi, K. Hirai, H. Yamamoto, S. Doi, Y. Ozaki Appl. Opt. 1998, 37, 759.
[5] B. Giese, D. McNaughton J. Phys. Chem. B 2002, 106, 101.
[6] J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, N. J. Halas J. Phys. Chem. C 2009, 113, 14390.
[7] E. Papadopoulou, S. E. J. Bell J. Phys. Chem. C 2010, 114, 22644.
[8] E. Papadopoulou, S. E. J. Bell Analyst 2010, 135, 3034.
[9] M. Sackmann, A. Materny J. Raman Spectrosc. 2006, 37, 305.
[10] A. Shamsaie, J. Heim, A. A. Yanik, J. Irudayaraj Chem. Phys. Lett. 2008, 461, 131.
[11] S. W. Bishnoi, C. J. Rozell, C. S. Levin ,M. K. Gheith ,B. R. Johnson ,D. H. Johnson, N. J. Halas Nano Lett. 2006, 6, 1687.
[12] E. Papadopoulou, S. E. J. Bell, J. Phys. Chem. C 2010, 114, 22644.
[13] E. Papadopoulou, S. E. J. Bell Analyst 2010, 135, 3034.
[14] J. L. Castro, M. R. Lopez-Ramirez, J. F. Arenas, J. Soto, J. C. Otero Langmuir 2012, 28, 8926.
[15] W. Ji, N. Spegazzini, Y. Kitahama, Y. Chen, B. Zhao, Y. Ozaki J. Phys. Chem. Lett. 2012, 3, 3204.
[16] Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren , Z. Q. Tian Nature Commun. 2011, 2, 305.
[17] T. Konishi, M. Kiguchi, M. Takase, F. Nagasawa, H. Nabika, K. Ikeda, K. Uosaki, K. Ueno, H.Misawa, K. Murakoshi J. Am. Chem. Soc. 2013, 135, 1009.
[18] M. Fleischmann, P. J. Hendra, A. J. McQuillan Chem. Phys. Lett. 1974, 26, 163.
[19] A. J. McQuillan Notes Rec. R. Soc. 2009, 63, 105.
[20] M. G. Albrecht , J. A. Creighton J. Am. Chem. Soc. 1977, 99, 5215.
[21] D. L. Jeanmaire, R. P. Van Duyne J. Electroanal. Chem. 1977, 84, 1.
[22] A. Campion, P. Kambhampati Chem. Soc. Rev. 1998, 27, 241.
[23] M. Moskovits Rev. Mod. Phys. 1985, 57, 783.
[24] L. Jensen, C. M. Aikens, G. C. Schatz Chem. Soc. Rev. 2008, 37, 1061.
[25] J. E. Demuth, P. N. Sanda Phys. Rev. Lett. 1981, 47, 57.
[26] D. Schmeisser, J.E. Demuth, Ph. Avouris Chem. Phys. Lett. 1982, 87, 324.
[27] H. Yamada, H. Nagata, K. Toba, Y. Nakao Surf. Sci. 1987, 182, 269.
[28] M. Sun, S. Wan, Y. Liu, Y. Jia, H. Xu J. Raman Spectrosc. 2008, 39, 402.
[29] M. Sun, S. Liu, M. Chen, H. Xu J. Raman Spectrosc. 2009, 40, 137.
[30] A. Kaczor, K. Malek, M. Baranska J. Phys. Chem. C 2010, 114, 3909.
[31] J. Gadd, S. Franzen Chem. Phys. 2012, 397, 34.
[32] A. Aviram, M. A. Ratner Chem. Phys. Lett. 1974, 29, 277.
[33] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, D. C. Ralph Nature 2002, 417, 722.
[34] Y. Lee, B. Carsten, L. Yu Langmuir 2009, 25, 1495.
[35] J. Hihath, C. Bruot, H. Nakamura, Y. Asai, I. Diez-Perez,Y. Lee, L. Yu, N. Tao ACS Nano 2011, 5, 8331.
[36] S. J. Van Der Molen, P. Liljeroth J. Phys.: Condens. Matter. 2010, 22, 133001.
[37] B. Y. Choi, S. J. Kahng, S. Kim, H. Kim, H. W. Kim, Y. J. Song, J. Ihm , Y. Kuk, Phys. Rev. Lett. 2006, 96, 156106.
[38] M. Tsutsui, M. Taniguchi Sensors 2012, 12, 7259.
[39] H. Song, M. A. Reed, T. Lee Adv. Mater. 2011, 23, 1583.
[40] T. Konishi, M. Kiguchi, M. Takase, F. Nagasawa, H. Nabika, K. Ikeda, K. Uosaki, K. Ueno, H. Misawa, K. Murakoshi J. Am. Chem. Soc., 2013, 135, 1009.
[41] Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren , Z. Q. Tian Nature Commun. 2011, 2, 305.
[42] I. N. Levine "Quantum Chemistry" (Pearson, 2009).
[43] P. Hohenberg, W. Kohn Phys. Rev. 1964, 136, B864.
[44] W. Kohn, L. J. Sham Phys. Rev. 1965, 140, A1133.
[45] S. H. Vosko, L. Wilk, M. Nusair Can. J. Phys. 1980, 58, 1200.
[46] J. P. Perdew, Y. Wang Phys. Rev. B 1992, 45, 13244.
[47] C. Lee, W. Yang, R. G. Parr Phys. Rev. B 1988, 785, 37.
[48] J. P. Perdew, Y. Wang Phys. Rev. B 1991, 44, 13298.
[49] J. P. Perdew, K. Burke, M. Ernzerhof Phys. Rev. Lett. 1996, 77, 3865.
[50] “The Plane Wave Pseudopotential Approach”, B. Meyer, in Computational Nanoscience: Do It Yourself!, J. Grotendorst, S. Blugel, D. Marx (Eds.) NIC Series, 2006, 31, 71.
[51] D. H. Hamann, M. Schluter, C. Chiang Phys. Rev. Lett. 1979, 43, 1494.
[52] J. S. Lin, A. Qteish, M. C. Payne, V. Heine Phys. Rev. B 1993, 47, 4174.
[53] N. Troullier, J. L. Martines Phys. Rev. B 1991, 43, 1993.
[54] D. Frenkel, B. Smit “Understanding Molecular Simulation from Algorithms to Applications“ (Elsevier, 2011)
[55] R. H. Landau, M. J. Paez, C. Bordeianu “A Survey of Computational Physics. Introductory Computational Science” (Princeton, 2008)
[56] D. Marx, J. Hutter “Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods” (Cambridge, 2009)
[57] R. M. Martin "Electronic Structure Basic Theory and Practical Methods" (Cambridge, 2004)
[58] R. P. Feynman, Phys. Rev. 1939, 56, 340.
[59] Statistical ensemble (mathematical physics) (2013, April 24) In Wikipedia, The Free Encyclopedia., from http://en.wikipedia.org/wiki/Statistical_ensemble
[60] S. Nose J. Chem. Phys, 1984, 81, 511.
[61] S. Nose Mol. Phys. 1984, 52, 255.
[62] W. G. Hoover Phys. Rev. A 1985, 31, 1685.
[63] W. G. Hoover Phys. Rev. A 1986, 34, 2499.
[64] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal J. Phys.: Condens. Matter 2002, 14, 2745.
[65] P. Ordejon Phys. Status Solidi B 2000, 217, 335.
[66] L. Kleinman, D. M. Bylander Phys. Rev, Lett. 1982, 48, 1425.
[67] F. Sankey, D. J. Niklewski Phys. Rev. B 1989, 40, 3979.
[68] J. Junquera, O. Paz, D. Sanchez-Portal, E. Artacho, Phys. Rev. B 2001, 64, 235111.
[69] E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, J. M. Soler Phys. Status Solidi B 1999, 215, 809.
[70] H. J. Monkhorst, J. D. Pack Phys. Rev. B 1976, 13, 5118.
[71] D. A. McQuarrie, “Statistical Mechanics” (Harper and Row, New York, 1976).
[72] R. G. Gordon Adv. Magn. Reson. 1968, 3, 1.
[73] P. H. Berens, S. R. White, and K. R. Wilson J. Chem Phys. 1981, 75, 515.
[74] P. Bornhauser, D. Bougeard J. Raman. Spectrosc. 2001, 32, 279.
[75] E. O. Brigham “The Fast Fourier Transform and Its Applications” (Prentice Hall, 1988).
[76] R. W. Ramirez “The FFT: Fundamentals and Concepts” (Tektronix, 1985).
[77] Twan Maintz, “Digital and Medical Image Processing, Image Processing CourseLiterature”, In University Utrecht, Department of Information and Computing Sciences, Chapter 7, pp.172-179,
http://www.cs.uu.nl/docs/vakken/imgp/
[78] J. S. Lin, S. Y. Lu, P. J. Tseng, W. C. Chou J. Comput. Chem. 2012, 33, 1274.
[79] W. C. Chou, “The theoretical studies of time-correlation functions with the first principle molecular dynamics simulations on surfaces”, Ph.D Thesis, Tamkang University: Taiwan, 2006.
[80] L. Zhao, L. Jensen, G. C. Schatz J. Am. Chem. Soc. 2006, 128, 2911.
[81] J. F. Arenas, I. L. Tocon, J. C. Otero, J. I. Marcos J. Phys. Chem. 1996, 100, 9254.
[82] Z. Q. Tian, B. Ren, D. Y. Wu J. Phys. Chem. B, 2002, 106, 9463.
[83] D. Y. Wu, S. Duan, B. Ren, Z. Q. Tian J. Raman Spectrosc. 2005, 36, 533.
[84] D. Y. Wu, X. M. Liu, S. Duan, X. Xu, B. Ren, S. H. Lin, Z. Q. Tian J. Phys. Chem. C 2008, 112, 4195.
[85] M. Moskovits, D. P. DiLella, K. J. Maynard Langmuir 1988, 4, 67.
[86] M. Moskovits, J. S. Suh J. Phys. Chem. 1984, 88, 5526.
[87] M. Moskovits Rev. Mod. Phys. 1985, 57, 783.
[88] E. L. Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects (Elsevier Science, 2008).
[89] P. J. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, 2011).
[90] D. L. Jeanmaire, R.P. Vanduyne J. Electroanal. Chem. 1977, 84, 1.
[91] Y.-F. Huang, N.-N. Yin, X. Wang, D.-Y. Wu, B. Ren, Z.-Q. Tian Chem. Eur. J. 2010, 16, 1449.
[92] Y. Hu, Y. Zhu, H. Gao, H. Guo Phys. Rev. Lett. 2005, 95, 156803.
[93] K. Tagami Surf. Sci. Nanotech. 2004, 2, 186.
[94] Z. Zhuang, J. Cheng, X. Wang, B. Zhao, X. Han, Y. Luo Spectrochim. Acta Part A 2007, 67, 509.
[95] Z. Zhuang, W. Ruan, N. Ji, X. Shang, X. Wang, B. Zhao Vib. Spectrosc. 2009, 49, 118.
[96] P. Atkins, R. Friedman “Molecular Quantum Mechanics” (Oxford, 2005).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信