淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1707201215183300
中文論文名稱 塑膠基材上製備二氧化矽/壓克力聚合物抗霧鍍膜
英文論文名稱 Preparation of silica/polyacrylate anti-fog coatings on plastic substrates
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 蔡宗穎
研究生英文姓名 Tsung-Ying Tsai
學號 698401121
學位類別 碩士
語文別 中文
口試日期 2012-07-05
論文頁數 91頁
口試委員 指導教授-鄭廖平
委員-陳慶鐘
委員-張朝欽
中文關鍵字 抗霧鍍膜  奈米複合材料  溶膠-凝膠法  二氧化矽  UV曝光硬化 
英文關鍵字 anti-fog coatings  nano hybrid materials  sol-gel process  silica  UV curing 
學科別分類
中文摘要 本研究以溶膠凝膠法搭配紫外光硬化製程,製備有機-無機奈米複合材料並應用於抗霧鍍膜上。
此實驗已成功合成出含矽氧烷基團的界面活性劑(親水劑),經過FTIR及1H NMR 檢測,證實N=C=O與OH 接枝完成並且可以直接添加到塗料中參與聚合反應。接著以無機單體四乙氧基矽烷(TEOS)和經過改質的界面活性劑,透過溶膠凝膠法在酸性環境中,製備出二氧化矽表面含有親水基團的溶膠,利用此改質過後的二氧化矽再加入具有雙鍵的偶合劑(MSMA),並利用FTIR 檢測基團變化、DLS觀察粒子成長、FESEM量測鍍膜厚度以及確認粒子是否均勻分布於鍍膜中,最後以刮刀塗佈的方式在聚碳酸酯(PC)基板上熱硬化成膜,輔以ATR 檢測鍍膜間化學鍵結是否良好。並且設計一種雙層塗佈方式來達到既可抗霧又可避免抗霧層遭到水氣破壞之問題,其底層是由二異戊四醇六丙烯酸酯(DPHA)、羥乙基甲基丙烯酸酯(2-HEMA)及1,6-己二醇二丙烯酸酯(HDDA)三者所構成之有機複合材料,它不但提供機械強度,也可因其疏水性而避免水分子之穿透;上層則是含有界面活性劑(Tween20)與二氧化矽之親水層,它提供了抗霧之功能,而兩層之間以化學鍵結緊密相連,不可分割,因此親水層不會因為高溼度而遭到破壞甚至脫落。
實驗中調整不同的TEOS與MSMA比例,期望找出與PC基板有良好的附著度並且提升塗膜的機械性質,透過雙層塗佈的設計,探討抗霧的效果及耐候性。研究結果顯示製備出來的溶膠確實以奈米顆粒大小分散於溶劑中,而且抗霧效果極佳,又有一定程度的穿透度,證實此一設計確實比一般單層式鍍膜具有更好的耐用性。
英文摘要 In this study, the organic - inorganic nanocomposites are prepared by sol-gel method and UV curing process, then applied on anti-fog coating.
This experiment has been synthesized surfactants containing silica oxygen alkyl group successfully. Testing by FTIR and 1H NMR, N=C=O and OH are graft completed by confirmed and can be added into the coating directly involved in polymerization. Then use inorganic monomeric Tetraethoxylsilane (TEOS) and modification of the surfactant through the design of sol-gel method in an acidic environment, the surface of silica sol containing hydrophilic groups is prepared, use this modified SiO2 and then add the coupling agent which has double bonds (MSMA), the groups changes by FTIR detection, the particle growth by DLS observation, use FESEM to measure coating thickness and confirm the particles are evenly distributed in the coating. In the last, use roller coating method on the polycarbonate (PC)substrate and then the film by hot coating, chemical bonding between the coating is good or not by ATR detection. Then to design a two-layer coating method to achieve anti-fog and avoid anti-fog layer to destruct by water vapor, the bottom is constituted by the three organic composite materials, such as Dipentaerythritol hexaacrylate (DPHA), 2-hydroxyethyl methacrylate (2-HEMA) and 1,6-Hexanediol Diacrylate (HDDA), it not only provides mechanical strength, but also its hydrophobic and avoid the penetration of water molecules; upper is a hydrophilic layer containing surfactant (Tween20) and SiO2, which provides anti-fog function, while the chemical bonding closes linked and inseparable between the two layers, so the hydrophilic layer was not damage or even loss because of high humidity.
Adjusting TEOS and MSMA proportion in the experiments, expect to find a good adhesion on PC substrates and enhance the mechanical properties of the coating, through the design of double-layer coating to explore the effect of anti-fog and weather resistance. The study results showed that the sol of the nanometer particle size is indeed dispersed in the solvent, and has excellent anti-fog, and has a certain degree of transparency, confirmed that this design does have better durability than the general single-layer coating.
論文目次 總目錄
中文摘要Ⅰ
英文摘要Ⅲ
總目錄Ⅴ
表目錄Ⅷ
圖目錄Ⅹ

第一章、序論1
前言1
第二章、理論與文獻回顧2
2-1界面活性劑2
2-1-1界面活性劑之作用機制2
2-1-2界面活性劑之功能4
2-2有機無機奈米複合材料6
2-3溶膠-凝膠法10
2-3-1溶膠-凝膠簡介10
2-3-2溶膠-凝膠法反應機制11
2-3-3溶膠-凝膠法之優缺點15
2-4無機粒子的改質17
2-5抗霧基礎原理20
2-6紫外光硬化技術22
2-7鍍層-基材系統與親疏水性25
2-8研究抗霧鍍膜之設計26
第三章、實驗29
3-1實驗藥品29
3-2實驗儀器31
3-3實驗步驟與流程33
3-3-1 HDDA浸泡吸溼性測定33
3-3-2有機塗層之製備33
3-3-3含Tween20塗膜之製備35
3-3-4含改質Tween20抗霧塗膜之製備38
3-3-5雙層型抗霧塗膜之製備41
3-4實驗儀器操作方法45
第四章、單層抗霧鍍膜之結果與討論48
4-1 PC吸收HDDA之測定48
4-2表面機械性質及熱蒸氣抗霧測試之探討分析48
4-3 傅氏紅外線吸收光譜(FT-IR)之鑑定與分析57
4-3-1 T20 sol之FTIR與NMR分析57
4-3-2 MT2O混成溶膠之FTIR分析61
4-4 DLS粒徑分布與FESEM分析63
4-5 含MT20鍍膜之表面機械性質及熱蒸氣抗霧測試67
第五章、 雙層抗霧鍍膜之結果與討論71
5-1 傅氏紅外線吸收光譜(FT-IR)之鑑定與分析71
5-1-1紫外光硬化程序之能量分析71
5-1-2 MTS混成溶膠之性質分析73
5-2 DLS粒徑分布及TEM、SEM粒子形態分析77
5-3鍍膜光穿透度分析81
5-4表面機械性質及熱蒸氣抗霧測試之探討分析82
第六章、結論85
第七章、參考文獻86

表目錄
表2-1構成界面活性劑之主要原子團3
表2-2界面活性劑及其使用目的5
表2-3一般鍍膜的處理9
表2-4溶膠-凝膠法製備材料之優點16
表2-5溶膠-凝膠法製備材料之缺點16
表2-6一般偶合劑種類整理18
表2-7單體之官能度和分子量對硬化膜性質影響23
表3-1HDDA與DPHA配方34
表3-2含Tween20鍍膜配方-135
表3-3含Tween20鍍膜配方-237
表3-4合成T20之藥品組成39
表3-5製備改質界面活性劑混成溶膠之藥品組成40
表3-6改質界面活性劑混成抗霧鍍膜之藥品組成40
表3-7硬質黏著層塗料之藥品組成41
表3-8製作MT20溶膠之藥品組成42
表3-9製作MTS溶膠之藥品組成43
表4-1DPHA/HDDA鍍膜之硬度與密著度48
表4-2Tween20/HDDA/DPHA/2-HEMA鍍膜之硬度、附著度、接觸角與
熱蒸氣抗霧表現試驗結果-149
表4-3Tween20/HDDA/DPHA/2-HEMA鍍膜之硬度、附著度、接觸角與
熱蒸氣抗霧表現試驗結果-252
表4-4含MT20鍍膜之硬度、附著度、接觸角、穿透度與熱蒸氣
抗霧表現70
表5-1各組成之MTS奈米粒子之粒徑79
表5-2含MT20鍍膜之硬度、附著度、接觸角、穿透度與熱蒸氣
抗霧表現84

圖目錄
圖2-1界面活性劑水溶液之表面張力與界面活性劑濃度的關係圖,以及在
臨界微胞濃度前後的界面活性劑結構示意圖3
圖2-2各種界面活性劑4
圖2-3界面活性劑的濃度與表面張力、界面張力及溶解度變化之情形6
圖2-4有機-無機混成材料之製程示意圖8
圖2-5二氧化矽於不同pH下之聚合情況15
圖2-6水膜在抗霧塗層的形成21
圖2-7熱蒸氣試驗下,左邊含有抗霧塗料;右邊則無22
圖2-8液體滴在固體上之作用力25
圖2-9ICPTES與Tween20反應生成T2027
圖2-10(a)TEOS水解縮合生成SiO2;(b)T20與SiO2反應生成改質二氧化
矽;(c)改質二氧化矽與MSMA反應生成MTS8
圖2-11雙層抗霧光學鍍膜之結構設計28
圖3-1有機塗層之製備及檢測流程34
圖3-2含Tween20鍍膜之製備及檢測流程36
圖3-3改質界面活性劑T20之製備流程38
圖3-4含改質Tween20之混成抗霧鍍膜之製備及檢測流程39
圖3-5雙層型抗霧光學鍍膜之製備及檢測流程44
圖3-6鉛筆硬度測試46
圖4-1(a)D1T1蒸氣試驗結果、(b)D1T3蒸氣試驗結果、(c)D1T4蒸氣試
驗結果、(d)D1T4蒸氣試驗乾燥後結果52
圖4-2(a)D9T1蒸氣試驗結果、(b)D9T2蒸氣試驗結果、(c)D9T3蒸氣試
驗結果、(d)D9T3蒸氣試驗乾燥後結果、(e)D9T4蒸氣試驗乾燥後
結果55
圖4-3(a)D9T1之FESEM厚度、(b)D9T1之FESEM截面圖56
圖4-4(a)ICPTES、Tween20單體及兩者反應30分鐘之FT-IR光譜分析、
(b)T20反應時間點取樣之FT-IR光譜分析59
圖4-5T20之NMR光譜分析60
圖4-6MT20混成溶膠隨反應時間點取樣之FT-IR光譜分析62
圖4-7MT20鍍膜之碳碳雙鍵(C=C)使用情形之ATR光譜分析62
圖4-8(a)Tween20與T20之粒徑分佈圖、(b)MT20之粒徑分佈圖(c)合成
MT20之反應時間對粒徑影響65
圖4-9(a)D9T204之FESEM厚度、(b)D9T204之FESEM截面圖66
圖4-10D9T204之FESEM-EDAX66
圖4-11(a)D9T202蒸氣試驗結果、(b)D9T203蒸氣試驗結果、(c)D9T204
蒸氣試驗結果、(d)D9T204蒸氣試驗乾燥後結果、(e)D9T207蒸氣
試驗乾燥後結果69
圖4-12D9T204穿透度70
圖5-1下層有機塗料之紫外光硬化能量FT-IR光譜分析72
圖5-2Silica sol之FT-IR光譜圖74
圖5-3(a)反應生成樣品T2過程中不同時間之FT-IR光譜圖、(b)反應3
小時後T1、T2、T3之FT-IR光譜比較圖75
圖5-4(a)反應生成樣品T2S1過程中不同時間之FT-IR光譜圖、(b)反應3
小時後T2S1、T2S2、T2S3之FT-IR光譜比較圖76
圖5-5MTS鍍膜之碳碳雙鍵(C=C)使用情形之ATR光譜分析77
圖5-6T2S2 sol之粒徑分佈圖78
圖5-7T2S2 sol之粒徑隨時間分佈圖78
圖5-8反應時間對粒徑之影響79
圖5-9(a)T2S2之FESEM厚度、(b)T2S2之FESEM截面80
圖5-10T2S2之FESEM-EDAX80
圖5-11T2系列之穿透度81
圖5-12T2S2之穿透度81
圖5-13T2S1之耐水後蒸氣試驗結果83
圖5-14T3S1之耐水後蒸氣試驗結果83
參考文獻 1.L. Maechler, C. Sarra-Bournet, P. Chevallier, N. Gherardi, G. Laroche,” Anti-Fog Layer Deposition onto Polymer Materials: A Multi-Step Approach” Plasma Chem. Plasma Process, 31, 175-187, (2011).
2.A. John Howarter, P. Jeffrey Youngblood , macromolecular, 29, 6, 449-532, (2008).
3.http://erarc.epa.gov.tw/183/201011220157/archive/niea.gov.tw/analysis/publish/month/44/44th2-1.htm
4.趙坤山, 張效銘, 界面活性劑在化妝品中的各種應用, 化妝品化學, 五南圖書出版股份有限公司, 139-158, (2006).
5.G.S. Hartley, “The Critical Concentration for Micelles in Solutions of Cetane Sulfonic Acid”, Journal of the American Chemical Society, 58, 12, 234 7-2354, (1936).
6.李潔如, 牟中原, 微胞、微乳液的形成, 科學月刊, 298, (1994).
7.C. N. Sawyer, P. L. McCarty, G. F. Parkin, Chemistry For Environmental Engineering, fourth edition, McGraw Hill, 532-1978, (1994).
8.王鳳英編繹, 刈米孝夫原著, 界面活性劑的原理與應用-第一篇,高立圖書有限公司, (1993).
9.周建良, 醣脂類生物界面活性劑rhamnolipid 醱酵基質最適化及生產策略之研究, 成功大學碩士論文, (2005).
10.趙承琛, 界面科學基礎, 復文書局, 74, (1990).
11.C.N. Mulligan, R.n. Yong, B.F. Gibbs, ”Surfactant-enhanced remediation of contaminated soil: a review” Engineering Geology, 60, 371-380, (2001).
12.J. W. Gilman, C. L. Jackson, A. B. Morgan, R.,Jr. Hayyis, E. Manias, E. P.Giannelis, M. Wuthenow, D. Hilton, S. H. Phillips, “Flammability Properties of Polymer-Layered-Silicate Nanocomposites, Polypropylene and Polystyrene Nanocomposites.”, Chem. Mater., 12, 1866-1873, (2000).
13.Z. Wang, T. Pinnavaia, “Nanolayer reinforcement of elastomeric polyureth- ane.”, Chem. Mater., 10, 3769-3771, (1998).
14.C. Lu, B. Yang, “High refractive index organic-inorganic nanocomposites: Design, synthesis and application.”, Chem. Mater., 19, 2884-2901, (2009).
15.M. Motomatsu, T. Takahashi, H. Y. Nie, W. Mizutani, H. Tokumoto, “Microstructure study of acrylic polymer-silica nanocomposite surface by scanning force microscopy”, Polymer, 38, 177-182, (1997).
16.K. J. Shea, D. A. Loy, O. W. Webster, “Aryl-bridged polysilsesquioxanes -new microporous materials.”, Chem. Mater., 1, 572, (1989).
17.Y. J. Qui K., “Part A Polymer Chemical.”, Polymer Sci., 36, 1607, (1998).
18.J. J. Fitzgerald, C. J. T. Landry, J. M. Pochan, “Dynamic studies of the molecular relaxations and interactions in microcomposites prepared by in- situ polymerization of silicon alkoxides”, Macromolecules, 25, 3715-3722, (1992).
19.E.J.A. Pope, M. Asami, J.D. Mackenzie, “Transparent silica gel-PMMA composites”, J. Mater. Res., 4, 4, 1018-1026, (1989).
20.http://plastic.me.ntu.edu.tw/STUDY/%E5%A4%9A%E5%AA%92%E9%AB%94%E6%95%99%E6%9D%90/%E5%A4%9A%E5%AA%92%E9%AB%94%E8%A8%88%E7%95%AB97/9/coating.htm
21.M. Ebelmen, “Memoire sur les temperatures de la Mediterranee.”, Ann. Chim. Phys., 15, 319, (1845).
22.T.Graham, “On the Properties of Silicic Acid and Other Analogous Colloidal Substances”, J. Chem. Soc., 17, 335-341, (1864).
23.W. Geffcken, E. Berger, Dtsch. Reichspatent. Jenaer Glaswerk Schott und Gen., Jena, GDR, 736, 411, (1939).
24.R. Roy, “Gel Route to Homogeneous Glass Preparation.”, J. Am. Ceram. Soc., 52, 344, (1969).
25.H. Schroeder, “Oxide Layers Deposited from Organic Solutions.”, Phys. Thin Film. 5, 87, (1969).
26.E. Dislich, Hussmann, “Amorphous and crystalline dip coatings obtained from organometallic solutions. Procedures, chemical processes and product- s.”, Thin Solid Films, 77, 129-140, (1981).
27.G. L. Wilkes, B. Orler, H. Huang, “Ceramers: Hybrid Materials Incorpo- rating Polymeric/Oligomeric Species with Inorganic Glasses by a Sol Gel Process. 2. Effect of Acid Content on the Final Properties.” Polym. Bull. (Berlin), 14, 557-564, (1985).
28.C. J. Brinker, J. G. W. Scherer, (ed.), “Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing.”, Academic Press,Inc., Boston, ,787-790, (1990).
29.Werner Stober, Arthur Fink, Ernst Bohn, “Controlled growth of mono- disperse silica spheres in the micron size range.”, Journal of Colloid and Interface Science, 26 62-69(1968).
30.F. K. Hansen, J. Ugelstad, “Particle nucleation in emulsion polymerization. I. A theory for homogenous nucleation.”, J. Polym. Sci., Polym. Chem. Ed., 16, 1953-1979(1978).
31.田佩、周禮君, 有機無機混成溶膠凝膠及其應用, 強塑廣用新知, 86, 152-164, (2001).
32.R.K. Iler, The chemistry of silica, Wiley-Inter Science, 190, (1979).
33.陳文章、劉韋志, 以溶膠凝膠法(Sol-Gel Process)製備有機/無機混成(Hybrid)材料, 化工, 第46卷, 第5期, 56-62, (1999).
34.C. J. Brinker, G. W. Scherer, “Sol-gel Science:The Physics and Chemistry of Sol-Gel Processing Academic Press.”, Gulf Professional, 908, (1990).
35.C. Sanchez, F. Ribot, “Design of Hybrid Organic-Inorganic Materials Syn- thesized Via Sol-Gel Chemistry”, New J. Chem., 18, 1007-1047, (1994).
36.D. C. Bradley, R. C. Mehrotra, D. P. Gaur, Metal Alkoxides, Academic:London, (1978).
37.M. Kotfera, T. Nishino, K. Nakamae, “Residual stress and microstructures of aromatic polyimide with different imidization processes”, Polymer, 41, 3615, (2000).
38.Yostry A. Attia, Sol-Gel Processing and Application, Plenum Press, New York, (1994).
39.黃逢璽, 感光性有機-無機奈米複合材料的製備與其於光學鍍膜之應用, 淡江大學博士論文, (2010).
40.Topco Technologies Corp(崇越電通股份有限公司), 有機官能基矽烷偶合劑.
41.D. Moller. “On the History of the Scientific Exploration of Fog, Dew, Rain and Other Atmospheric Water”, DIE. ERDE. 139, 11-44, (2008).
42.R. N. Wenzel, “Resistance of solid surfaces to wetting by water.” Industrial and Engineering Chemistry, 28, 8, 988-994, (1936).
43.H. Zhao, D. Beysens, “From Droplet Growth to Film Growth on a Heter- ogeneous Surface: Condensation Associated with a Wettability Gradient.”, Langmuir, 11, 627-634, (1995).
44.V. Plasman, T. Caulier, N. Boulos, “Polyglycerol esters demonstrate superior antifogging properties for films.”, Plastics Additives & Compounding, 39, 30-33, (2005).
45.J. A. Howater, J. P. Youngblood, “Self-Cleaning and Anti-Fog Surfaces via Stimuli-Responsive Polymer Brushes”, Adv. Mater., 19, 3838-3843, (2007).
46.J. A. Howater, J. P. Youngblood, “Self-cleaning and next generation anti- fog surfaces and coating.”, Macromol. Rapid Commun., 29, 455-466, (2008).
47.X. Feng, L. Jiang, “Design and Creation of Superwetting/Aniwetting Sur- faces.”, Adv. Mater., 18, 3036-3078, (2006).
48.J. D. De Sousa, I. V. Khudyakov, “Ultraviolet (UV)-curable amide imide oligomers.”, Industrial and Engineering Chemistry Research, 45, 6413 -6419, (2006).
49.C. Nason, T. Roper, C. Hoyle, J. A.”UV-Induced Frontal Polymerization of Multifunctional (Meth)Acrylates.”, Pojman, Macromolecules, 38, 5506- 5512, (2005).
50.江德海, 紫外光固化材料-理論與應用,科學出版社, 225-227, (2001).
51.劉瑞祥, 感光性高分子,復文書局, 52-97, (2002).
52.G.Xu, W. Shi,“Progress in Organic Coatings.”, 52(2), 110-117, (2005).
53.H. Kou, A. Asif, W. Shi, ”Photopolymerization kinetics of hyperbranched acrylated aromatic polyester”, Journal of Applied Polymer Science, 89(6), 1500-1504, (2003).
54.張豐志, 應用高分子手冊, 五南出版社, 437~459, (2003).
55.J. V. Crivello, “Nuclear Instruments and Methods in Physics Research B.”, 1518-1521, (1999).
56.M. Madou, “Fundamentals of Microfabrication.”, CRC Press, New York, 468-482, (1997).
57.田民波, 薄膜技術與薄膜材料, 五南圖書出版股份有限公司, (2007).
58.T. Young, Trans. R. Soc., London, 95, 84, (1805).
59.黃智楷, 利用氟系高分子材料製備超疏水薄膜之研究, 中央大學碩士論文, (2005)。
60.M. Kluke,”Synthese und Charakterisierung anorganisch - organischer Beschichtungsmaterialien auf der Basis von 3-Isocyanatopropyltriethoxy- silan”, 149-150, (2006).
61.M. ,Verbrugghe, P.,Sabatino, E.,Cocquyt, P.,Saveyn, D., Sinnaeve, P., Van der Meeren, J.C., Martins,”Solubilization of flurbiprofen with non-ionic Tween20 surfactant micelles: A diffusion 1H NMR study”, Colloids and Surfaces A: Physicochem. Eng. Aspects 372, 28-34, (2010).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信