淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1707201213453000
中文論文名稱 動態價格跳躍與最小變異數避險組合的風險值-以英國布蘭特石油現貨與期貨價格為例
英文論文名稱 Dynamic Price Jump and Value-at-Risk for the Minimum Variance Hedging Portfolio: The Case of Brent Crude Oil Spot and Futures Price
校院名稱 淡江大學
系所名稱(中) 管理科學學系碩士班
系所名稱(英) Master’s Program, Department of Management Sciences
學年度 100
學期 2
出版年 101
研究生中文姓名 王植顥
研究生英文姓名 Chih-Hao Wang
學號 699620950
學位類別 碩士
語文別 中文
口試日期 2012-06-22
論文頁數 30頁
口試委員 指導教授-莊忠柱
共同指導教授-王譯賢
委員-林忠機
委員-蔡蒔銓
委員-婁國仁
中文關鍵字 期貨  風險值  最小變異數避險組合  回顧測試  穿透次數 
英文關鍵字 Futures  Value-at-Risk  Minimum Variance Hedging Portfolio  Backtesting  Failure Times 
學科別分類
中文摘要 投資產品的多元化,如何降低投資組合風險是件非常重要的課題。由於期貨市場與現貨市場具有高度相關,利用期貨契約規避市場現貨價格變動的衝擊,已成為投資者維持損益的關鍵。本研究以2010年至2011年布蘭特石油價格為主要研究對象利用Chan and Young(2006)提出的雙變量ARJI-GARCH(1,1)模型捕捉價格不連續的變動,且在95%及99%信賴水準下,比較未避險模型、雙變量GARCH(1,1)模型與雙變量ARJI- GARCH(1,1)模型的最小變異數避險組合的多頭部位風險值。將風險值和資產真實損益間進行比較,最後利用Kupiec(1995)概似比檢定與Christoffersen(1998)條件涵蓋檢定法評估風險值模型。研究結果發現:對風險值績效評估而言,未避險模型與雙變量GARCH(1,1)模型在顯著水準1%下的風險值績效皆未能通過回顧測試,而雙變量ARJI- GARCH(1,1)模型在顯著水準5%及1%下皆呈現顯著,表示此雙變量ARJI-GARCH (1,1)模型能確切地捕捉到厚尾及價格不連續的特性,此結果可為金融機構來評估資產組合下的風險,其能改善在尾部分佈下的風險值估計效能,並捕捉金融資產報酬的波動性叢聚、厚尾及價格不連續等特性。
英文摘要 How to reduce portfolio risk an very important issue based on diversification of investment products. A highly relationship was shown on futures and spot market, so making use of futures contracts to avoid the spot market changes in price shocks has become the key to investors to maintain the profit and loss. The study is to compute Value-at-Risk in the long trading position for the minimum variance hedging portfolio by using GARCH(1,1) model, bivariate GARCH (1,1) model and bivariate ARJI-GARCH(1,1) model at two significant levels. The sample daily data is Brent crude oil closing price in spot and furtures market. Moreover, the study is to evaluate the different models by using backtesting method based on likelihood ratio test proposed by Kupiec (1995) and Christoffersen(1998). The study showed that the bivariate ARJI-GARCH (1,1) model at the significance level of 5% and 1% are statistically significant, indicating that the bivariate ARJI-GARCH(1,1) model can accurately describe the discontinuous characteristics of the fat tail and price. This result can provide valuable information for financial institutions to assess the portfolio risk. It improves the estimated performace under the tail distribution and further forecast the financial asset return volatility, fat tail, and the discontinuous price.
論文目次 目錄

目錄 Ⅰ
表目錄 Ⅱ
圖目錄 Ⅲ
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究架構 4
2. 樣本與方法 6
2.1 研究樣本 6
2.2 實證模型 6
2.3 條件最小變異數比率 9
2.4 條件風險值 10
2.5 回顧測試法 12
3. 實證結果分析 15
3.1 基本敘述統計分析 15
3.2 ARJI-GARCH(1,1)模型的參數估計 17
3.3 條件風險值績效衡量與分析 18
4. 結論與建議 23
4.1 結論 23
4.2 建議 24
參考文獻 26

表目錄

表3-1 日資料報酬基本統計分析 16
表3-2 GARCH(1,1)與ARJI-GARCH(1,1)模型參數估計 17
表3-3 最小變異數避險組合的避險比率 20
表3-4 最小變異數避險組合的條件風險值評估績效 21

圖目錄

圖1-1 研究流程 5
圖3-1 日資料價格及日資料報酬時間序列走勢圖 15
圖3-2 樣本外一天風險值預測之移動視窗法 19
圖3-3 ARJI-GARCH(1,1)模型的最小變異數避險組合波動性時間走勢圖 22

參考文獻 中文文獻

1.邱哲修、林卓民、洪瑞成與柯月華,2005。價格跳躍與避險策略之探討-以道瓊工業指數現貨與期貨為例,經營管理論叢,第一卷,第二期,頁93-116。

2.胥愛琦 與 吳清豐,2003。台灣股市報酬與匯率變動之波動性外溢效果-雙變量EGARCH模型的應用,台灣金融財務季刊,第四卷,第三期,頁87-103。

3.黃聖志、蘇欣玟與杜國賓,2008。避險基金指數之風險值探討,商管科技季刊,第九卷,第三期,頁277-300。

4.劉洪鈞、黃聖志與王怡文 (2008)。西德州與布蘭特原油避險策略,真理財經學報,第十八期,頁71-98。

5.蘇榮斌,2010,美國原油市場之風險值預測,中華科技大學學報,第四十二期,頁161-175。

英文文獻

1.Angelidis, T., A. Benos and S. Degiannakis, 2007, A Robust VaR Model under Different Time Periods and Weighting Schemes, Review of Quantitative Finance and Accounting, 28, 2, pp. 187-201.

2.Bates, D. S., 1996, Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options, Review of Financial Studies, 9, 1, pp. 69-107.

3.Bollerslev, T., 1986, Generalized Autoregressive Conditional Heteroskedasticity,Journal of Econometrics, 31, 3, pp. 307-327.

4.Bollerslev, T., 1987, A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return, Review of Economics and Statistics, 69,3, pp. 542-547.

5.Brooks, C., A. D. Clare, J. W. D. Molle and G. Persand, 2005, A Comparison of Extreme Value Theory Approaches for Determining Value at Risk, Journal of Empirical Finance, 12, 2, pp. 339-352.

6.Campbell, R. A. and R. Kraussl, 2007, Revisiting the Home Bias Puzzle Downside Equity Risk, Journal of International Money and Finance, 26, 7,pp. 1239- 1260.

7.Chan, W. H., 2009, Optimal Hedge Ratios in the Presence of Common Jumps,Journal of Futures Markets, 30, 8, pp. 801-807.

8.Chan, W. H. and D. Young, 2006, Jumping Hedges: An Examination of Movements in Copper Spot and Futures Markets,Journal of Futures Markets, 26, 2, pp. 169-188.

9.Chan, W. H. and J. M. Maheu, 2002, Conditional Jump Dynamics in Stock Market Returnsm, Journal of Business and Economic Statistics, 20, 3,pp. 377-389.

10.Chen, S. W. and C. H. Shen, 2004, GARCH, Jumps and Permanent and Transitory Components of Volatility: The Case of the Taiwan Exchange rate, Mathematics and Computers in Simulation, 67, 3, pp. 201-216.

11.Christoffersen, P. F., 1998, Evaluating Interval Forecasts, International Economic Review, 39, 4, pp. 841-862

12.Cremers, J., M. Kritzman and S. Page, 2005, Optimal Hedge Fund Allocations, Journal of Portfolio Management, 31, 3, pp. 70-81.

13.Das, S. R. and K. Sundaram, 1999, Of Smiles and Smirks: A Term Structure Perspective, journal of Financial and Quantitative Analysis, 34, 2, pp. 211-239.

14.Engle, R. F., 1982, Autoregressive Conditional Heteroskeddasticity with Estimates of Variance of UK Inflation, Econometrica, 50, 4, pp. 987-1008.

15.Engle, R. F. and K. F. Kroner, 1995, Multivariate Simultaneous Generalized ARCH, Econometric Theory, 11, 1, pp. 122-150.

16.Escanciano, J. C. and J. Olmo, 2010,Robust Backtesting Test for Value-at-Risk Models, Journal of Financial Econometrics, 9, 1, pp. 132–161.

17.Giot, P. and S. Laurent, 2004, Modelling daily Value-at-Risk Using Realized Volatility and ARCH Type Models, Journal of Empirical Finance, 11, 3, pp.379-398.

18.Gupta, A. and B. Liang, 2005, Do Hedge Funds Have Enough Capital? A Value-at-Risk Approach, Journal of Financial Economices, 77, 1, pp. 219-253.

19.Jarque, C. M. and A. K. Bera, 1987, A Test for Normality of Observations and Regression Residuals, International Statistical Review, 55, 2, pp. 163-172.

20.Johnson, L. L., 1960, The Theory of Hedgeing and Speculation in Commodity Futures, Review of Economic Studies, 27, 3, pp. 139-151.

21.Jorion, P., 1988, On Jump Processes in the Foreign Exchange and Stock Markets,Review of Financial Studies, 1, 4, pp. 427-445.

22.Jorion, P., 1996. Risk : Measuring the Risk in Value at Risk, Financial Analysis Journal, 52, 6, pp. 47 -56.

23.Kupiec, P., 1995, Techniques for Verifying the Accuracym of Risk Management Models, Journal of Derivatives, 3, pp. 73-84.

24.Lee, Y. H., H. N. Hu and J. S. Chiou, 2010, Jump Dynamics with Structural Breaks for Crude Oil Prices, Energy Economics, 32, 2, pp. 343–350.

25.Lenza, A., M. Manera and M. McAleerd, 2006, Modeling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns, Finance Research Letters, 3, 2, pp. 114-132.

26.Lu, X., K. Maekawa and K. Kawai, 2006, Estimating Bivariate GARCH-Jump Model Based on High Frequency Data: The Case of Revaluation of Chinese Yuan in July 2005, Asia Pacific Journal of Operational Research, 27, 2, pp. 287-300.

27.Lunde, A., O. E. B. Nielsen, P. R. Hansen and N. Shephard,2011, Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise Andnon-Synchronous Trading, Journal of Econometrics, 162, 2, pp. 149-169.

28.Rockafellar, R. T. and S. Uryasev, 2000, Optimization of Conditional Value-at-Risk, Journal of Risk, 7, 2, pp. 21-41.

29.Rombouts, J. V. K. and M. Verbeek, 2009, Evaluating portfolio Value-at-Risk Using Semi-Parametric GARCH Models, Quantitative Finance, 9,6, pp. 737-745.

30.Samia, M., M. Dalenda and A. Saoussen, 2009, Accuracy and Conservatism of VaR Models: A Wavelet Decomposed VaR Approa versus Standard ARMA-GARCH Method, International Journal of Economics and Finance, 1, 2, pp. 174-184.

31.Teo, M., 2009, The Geography of Hedge Funds, Review of Financial Studies, 22, 9, pp. 3531-3561.

32.Tsafack, G., 2009, Asymmetric Dependence Implications for Extreme Risk Management, Journal of Derivatives, 17, 1, pp. 7-20.

33.Wang, Y., C. Wu and Y. Wei (2011). Can GARCH-Class Models Capture Long Memory in WTI Crude Oil Markets? Economic Modelling, 28, 3, pp. 921-927.

34.Wong, W. K., 2010, Backtesting Value-at-Risk Based on Tail Losses, Journal of Empirical Finance, 17, 3, pp. 526-538.

35.Yang, M. J. and Y. C. Lai, 2008, The Hedging Effectiveness of Stock Index Futures for Alternative Models and Hedging Strategies, Journal of Futures and Options, 1, 1, pp. 109-140.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信