§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1707201213283800
DOI 10.6846/TKU.2012.00705
論文名稱(中文) 空間陣列和極化陣列天線對各種隧道之同頻干擾的通道容量研究
論文名稱(英文) Channel Capacity of Spatial and Polar Antenna Arrays for Various Tunnels with Co-Channel Interference
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 莊智閔
研究生(英文) Chih-Min Chuang
學號 699440565
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2012-06-19
論文頁數 85頁
口試委員 指導教授 - 丘建青
委員 - 丘建青
委員 - 李慶烈
委員 - 鄭士康
委員 - 郭仁財
委員 - 方文賢
關鍵字(中) 多輸入多輸出全球移動通訊系統
同頻干擾
射線彈跳追蹤法
通道容量
空間陣列
極化陣列
關鍵字(英) MIMO-GSM
Co-Channel Interference
ray-tracing approach
channel capacity
Spatial Array and Polar Array
第三語言關鍵字
學科別分類
中文摘要
本論文主要研究各種隧道內同頻干擾(Co-Channel Interference , CCI)的多輸入多輸出(Multiple-Input Multiple- Output, MIMO)系統之通道容量 (Channel Capacity)。多輸入多輸出可以有效的提高無線通訊系統的通道容量,值得我們將其納入全球移動通訊系統( Global System for Mobile Communications, GSM )中討論,因為多輸出多輸入其通道容量與天線數量呈現線性成長,帶來高傳輸率以及高傳輸品質,藉此能提升系統傳輸率。
  研究使用射線彈跳追蹤法( Ray-Tracing Model )模擬多輸入多輸出的通訊訊號傳輸情形,求得全球移動通訊系統在六種不同隧道下的通道頻率響應,進一步計算相應的通道容量。其六種不同的隧道分別為:1.半圓直線隧道2.矩形直線隧道3.多邊形直線隧道4.半圓彎曲隧道5.矩形彎曲隧道6.多邊形彎曲隧道。
  本文提出此系統在真實環境下會遭遇的兩個問題,並利用模擬途徑計算出所需的結果。在多輸入多輸出的全球移動通訊系統(MIMO-GSM)中,計算出有無同頻干擾之系統通道容量,然而,干擾源包括單一干擾和多根干擾。
  其次,使用空間陣列( Spatial Array, SA )天線和極化陣列( Polar Array, PA )天線部署下,對於此系統通道容量的影響,以往多輸入多輸出大部分都是採用空間陣列天線,然而在某些情況之下,極化陣列天線反而比空間陣列天線來的適合,在多輸入多輸出全球移動通訊系統中傳送端、接收端和多個同頻干擾皆採用兩種天線陣列探討。根據研究結果,在各種隧道內沒有同頻干擾和有同頻干擾的情況下,極化陣列天線優於空間陣列天線的通道容量,研究還發現,周邊彎曲的多邊形隧道在同頻干擾下有最壞的通道容量。
英文摘要
This paper focuses on the research of channel capacity of Multiple-Input Multiple-Output (MIMO) system with co-channel interference (CCI) in various tunnels. A ray-tracing technique is developed to calculate channel frequency responses in six different geometrical shape tunnels, and the channel frequency response is further used to calculate corresponding channel capacity.
  The channel capacities are calculated based on the realistic environment in this thesis. First, channel capacities of MIMO Global System for Mobile Communications (MIMO-GSM) system without and with CCI are computed. Next, the channel capacities by using spatial and polar antenna arrays deployment are calculated. According to the results, channel capacity of Polar Array (PA) is better than that of Spatial Array (SA) without and with CCI in various tunnels. It is also found that the curvy polygon tunnel has the worst channel capacity with CCI.
第三語言摘要
論文目次
目錄
致謝.......................................................I
Abstract..................................................V
目錄.....................................................VII
圖目錄.....................................................X
表目錄..................................................XIII
第一章 概論.................................................1
1.1 研究背景................................................1
1.2 研究動機................................................7
1.3 研究內容簡介.............................................9
第二章  系統理論............................................10
2.1 多輸入多輸出窄頻系統.....................................10
2.2 多輸入多輸出窄頻系統通道容量...............................14
2.2.1 建立在 CSI-B 狀態下...................................14
2.2.2 建立在只有 CSI-R 狀態下................................15
2.2.3 中斷容量(Outage capacity)和統計容量(Ergodic capacity)	..........................................................17
2.3 影響MIMO容量因素........................................18
2.3.1 空間自由度(Spatial degree of freedom.................18
2.3.2 特徵矩陣(Eigenmatrix)和條件數目(Condition number)...19
2.3.3 空間關係(Spatial correlation)......................20
2.4 干擾源之多輸入多輸出窄頻系統的通道容量......................21
2.4.1 系統表示............................................21
2.4.2 建立在CSI-B的通道容量表示.............................26
2.5 MIMO-GSM系統之通道容量.................................28
第三章 通道計算模型.........................................29
3.1 無線電波傳播通道分析....................................29
3.2 通道計算模型分析.......................................31
3.2.1 利用射線追蹤法計算頻域響應..............................32
3.3 射線彈跳追蹤法程式流程分析................................35
第四章 模擬數值結果	.........................................39
4.1 模擬實驗的環境.........................................39
4.2 模擬結果分析與比較......................................45
4.2.1 半圓形隧道..........................................45
4.2.2 矩形隧道............................................55
4.2.3 多邊形隧道..........................................65
4.2.4 不同隧道的比較.......................................75
第五章 結論...............................................79
參考資料..................................................80

圖目錄
圖1.1 SISO, SIMO, MISO和MIMO 示意圖...............2
圖1.2 多輸入多輸出系統通道模型示意圖...............5
圖2.1 多輸入多輸出窄頻系統矩陣示意圖...............10
圖2.2 多輸入多輸出窄頻系統示意圖...............12
圖2.3 建立在 CSI-B 狀態下多輸入多輸出窄頻系統的等效架構圖.........13
圖2.4 干擾源的多輸入多輸出窄頻系統矩陣示意圖...............22
圖2.5 干擾源的多輸入多輸出窄頻系統示意圖...............24
圖2.6 建立在CSI-B狀態下之干擾源的多輸入多輸出窄頻系統的等效架構圖...25
圖3.1 求得通道頻率響應...............31
圖3.2 SBR/Image 程式流程圖	...............38
圖4.1(a) 直線隧道的頂視圖...............41
圖4.1(b) 彎曲隧道的頂視圖...............42
圖4.2(a) 半圓形隧道的橫截面示意圖...............43
圖4.2(b) 矩形隧道的橫截面示意圖...............43
圖4.2(c) 多邊形隧道的橫截面示意圖...............43
圖4.3(a) 空間陣列示意圖...............44
圖4.3(b) 極化陣列示意圖...............44
圖4.4 直線半圓形隧道中所需系統之MIMO-SA和MIMO-PA在有無同頻干擾情況下其平均通道容量...............49
圖4.5 直線半圓形隧道中所需系統之MIMO-SA在有CCI-SA、CCI-PA和沒有加入同頻干擾的平均通道容量...............50
圖4.6 直線半圓形隧道中所需系統之MIMO-PA在有CCI-PA、CCI-SA和沒有加入同頻干擾的平均通道容量...............51
圖4.7 彎曲半圓形隧道中所需系統之MIMO-SA和MIMO-PA在在有無同頻干擾情況下其平均通道容量...............52
圖4.8 彎曲半圓形隧道中所需系統之MIMO-SA在有CCI-SA、CCI-PA和沒有加入同頻干擾的平均通道容量...............53
圖4.9 彎曲半圓形隧道中所需系統之MIMO-PA在有CCI-PA、CCI-SA和沒有加入同頻干擾的平均通道容量...............54
圖4.10 直線矩形隧道中所需系統之MIMO-SA和MIMO-PA在有無同頻干擾情況下其平均通道容量...............59
圖4.11 直線矩形隧道中所需系統之MIMO-SA在有CCI-SA、CCI-PA和沒有加入同頻干擾的平均通道容量...............60
圖4.12 直線矩形隧道中所需系統之MIMO-PA在有CCI-PA、CCI-SA和沒有加入同頻干擾的平均通道容量...............61
圖4.13 彎曲矩形隧道中所需系統之MIMO-SA和MIMO-PA在有無同頻干擾情況下其平均通道容量...............62
圖4.14 彎曲矩形隧道中所需系統之MIMO-SA在有CCI-SA、CCI-PA和沒有加入同頻干擾的平均通道容量...............63
圖4.15 彎曲矩形隧道中所需系統之MIMO-PA在有CCI-PA、CCI-SA和沒有加入同頻干擾的平均通道容量...............64
圖4.16 直線多邊形隧道中所需系統之MIMO-SA和MIMO-PA在有無同頻干擾情況下其平均通道容量...............69
圖4.17 直線多邊形隧道中所需系統之MIMO-SA在有CCI-SA、CCI-PA和沒有加入同頻干擾的平均通道容量	70
圖4.18 直線多邊形隧道中所需系統之MIMO-PA在有CCI-PA、CCI-SA和沒有加入同頻干擾的平均通道容量...............71
圖4.19 彎曲多邊形隧道中所需系統之MIMO-SA和MIMO-PA在有無同頻干擾情況下其平均通道容量...............72
圖4.20 彎曲多邊形隧道中所需系統之MIMO-SA在有CCI-SA、CCI-PA和沒有加入同頻干擾的平均通道容...............73
圖4.21 彎曲多邊形隧道中所需系統之MIMO-PA在有CCI-PA、CCI-SA和沒有加入同頻干擾的平均通道容量...............74
圖4.22 各種直線隧道中所需系統之MIMO-SA和MIMO-PA在加入單一同頻干擾情況下其平均通道容量...............76
圖4.23 各種彎曲隧道中所需系統之MIMO-SA和MIMO-PA在加入單一同頻干擾情況下其平均通道容量...............77
圖4.24 各種彎曲隧道中所需系統之MIMO-SA在加入CCI-SA、CCI-PA干擾源的平均通道容量...............78

表目錄
表2.1 對應不同系統中空間自由度的數目...............18
參考文獻
[1].G. D. Durgin, Space-Time Wireless Channels. New Jersey: Prentice Hall PTR, 2003.
[2].D. Tse and P. Viswanath, Fundamentals of Wireless Communication. United Kingdom: Cambridge University Press, 2005.
[3].B. S. Paul, R. Bhattacharjee, MIMO Channel Modeling: A Review. IETE TECHNICAL Vol 25, ISSUE 6, NOV-DEC 2008.
[4].C. Oestges and B. Clerckx, MIMO WIRELESS COMMUNICATIONS.
[5].I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans. Telecommun., vol. 10, Nov. 1999, pp. 585–595.
[6].G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communication, vol. 6, Mar. 1998, pp. 311–335.
[7].M. Gonzalez-Lopez and A. Dapena. L. Castedo” Space-Time Codiog for GSM Systems in Subway Tunnel Environments,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, 2002, pp. 2701-2704.
[8].C. Briso-Rodriguez, J.M. Cruz, J.I. Alonso, “Measurements and modeling of distributed antenna systems in railway tunnels,” IEEE Transactions on Vehicular Technology, vol. 56, no.5, 2007, pp. 2870-2879.
[9].A. Hrovat, G. Kandus, T. Javornik, “Four-slope channel model for path loss prediction in tunnels at 400 MHz,” IET Microwaves, Antennas and Propagation, vol. 4, Dec. 2010, pp. 571-582. 
[10].Y. Song, S. D. Blostein and J. Cheng, ”Outage Probability Comparisons for Diversity Systems With Cochannel Interference in Rayleigh Fading,” IEEE Transactions On Wireless Communications, vol. 4, no. 4, 2005, pp. 1279-1284.
[11].L. Yang and M.-S. Alouini, “Performance Comparison of Different Selection Combining Algorithms in Presence of Co-Channel Interference,” IEEE Transactions on Vehicular Technology, vol. 55, no. 2, 2006, pp. 559-571.
[12].A. Shah, A. M. Haimovich, M. K. Simon and M.-S. Alouini, “Exact Bit-Error Probability for Optimum Combining with a Rayleigh Fading Gaussian Cochannel Interferer,” IEEE Transactions On Communications, vol. 48, no. 6, 2000, pp. 908-912.
[13].A. Shah and A. M. Haimovich, ” Performance Analysis of Maximal Ratio Combining and Comparison with Optimum Combining for Mobile Radio Communications with Cochannel Interference,” IEEE Transactions on Vehicular Technology, vol. 49, no. 4, 2000, pp. 1454-1463.
[14].R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE Journal on Selected Areas in Communications , Vol. 20, No.9, December 2002, pp. 1628-1637.
[15].B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministic ultra-wideband channel modeling,” IEEE Conference on Ultra-Wideband System Technologies, May 2002, pp. 1-5.
[16].Y. Zhang, “Ultra-wide bandwidth channel analysis in time domain using 3-D ray tracing,” High Frequency Postgraduate Student Colloquium of IEEE, Sept. 2004, pp. 189-194.                                   
[17].E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Weband Matlab, Prentice-Hall, 2000.                                                  
[18].T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons, 1991.                                                           
[19].Z. Xu, S. Sfar and R. S. Blum, “Analysis of MIMO Systems With Receive Antenna Selection in Spatially Correlated Rayleigh Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, Jan. 2009, pp. 251-262.  
[20].W. J. Chang, J. H. Tarng and S. Y. Peng, “Frequency-Space-Polarization on UWB MIMO Performance for Body Area Network Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 7, 2008, pp.577-580. 
[21].J. F. Valenzuela-Valdes, M. A. Garcia-Fernandez, A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, “The Influence of Efficiency on Receive Diversity and MIMO Capacity for Rayleigh-Fading Channels,” IEEE Trans. Antennas Propagat., vol. 56, no. 5, May 2008, pp. 1444-1450. 
[22].A. J. Paulraj, R. Nabar and D. Gore, Introduction to Space-Time Wireless Communication. U.K.: Cambridge Univ. Press, 2003. 
[23].J. B. Andersen, “Array gain and capacity for known random channels with multiple element arrays at both ends,” IEEE J. Sel. Areas Commun., vol. 18, no. 11, Nov. 2000, pp. 2172–2178.  
[24].J. S. K. Raj, A. S. Prabu, N. Vikram, and J. Schoebel, “Spatial Correlation and MIMO Capacity of Uniform Rectangular Dipole Arrays,” IEEE Trans. Antennas Propagat. Lett., vol. 7, 2008, pp97-100. 
[25].P. L. Kafle, A. Intarapanich, A. B. Sesay, J. McRory and R. J. Davies, “Spatial Correlation and Capacity Measurements for Wideband MIMO Channels in Indoor Office Environment,” IEEE Trans. Wirel. Commun., vol. 7, no. 5, MAY 2008, pp.1560-1571.
[26].R. H. Y. Louie, M. R. McKay and I. B. Collings, “Impact of Correlation on the Capacity of Multiple Access and Broadcast Channels with MIMO-MRC,” IEEE Trans. Wirel. Commun., vol. 7, no. 6, June 2008, pp.2397-2407.
[27].O. Fernandez, M. Domingo, and R. P. Torres, “Empirical analysis of the correlation of MIMO channels in indoor scenarios at 2 GHz,” Inst. Electr. Eng. Proc. Commun., vol. 152, no. 1, Feb. 2005, pp. 82-88. 
[28].P. Kyritsi, D. C. Cox, R. A. Valenzuela, and P. W. Wolniansky, “Correlation analysis based on MIMO channel measurements in an indoor environment,” IEEE J. Sel. Areas Commun., vol. 21, no.5, Jun. 2003, pp. 713-720. 
[29].H. R. Bahrami and T. Le-Ngoc, “MIMO Precoder Designs for Frequency-Selective Fading Channels Using Spatial and Path Correlation,” IEEE Trans. Veh. Technol., vol. 57, no. 6, Nov. 2008, pp. 3441-3452.
[30].M. Chiani, M. Z. Win, and A. Zanella, “On the capacity of spatially correlated MIMO Rayleigh-fading channels,” IEEE Trans. Inf. Theory, vol. 49, no. 10, Oct. 2003, pp. 2363–2371.
[31].R. O. LaMaire and M. Zorzi, “Effect of correlation in diversity systems with Rayleigh fading, shadowing, and power capture,” IEEE J. Sel. Areas Commun., vol. 14, no. 3, Apr. 1996, pp. 449–460.
[32].S. H. Chen and S. K. Jeng ,“An SBR/Image approach for indoor radio propagation in a corridor,” IEICE TRANSACTIONS on Electronics, Vol. E78-C, No.8, August 1995, pp. 1058-1062.
[33].S. H. Chen and S. K. Jeng, “SBR/Image approach for radio wave propagation in tunnels with and without traffic,” IEEE Transactions on Vehicular Technology, Vol. 45, No.3, August 1996, pp. 570-578.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信