淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1707201212571300
中文論文名稱 時域中埋藏在三層空間中二維非均勻介質柱體影像之重建
英文論文名稱 Time Domain Image Reconstruction Of 2-D Inhomogenous Dielectric Cylinders Buried in a Slab Medium
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 李俊甫
研究生英文姓名 Jyun-Fu Li
學號 699450309
學位類別 碩士
語文別 中文
口試日期 2012-06-19
論文頁數 54頁
口試委員 指導教授-丘建青
委員-李慶烈
委員-張道治
委員-林丁丙
委員-唐震寰
中文關鍵字 有限時域差分法  時域逆散射  非同步粒子群聚法法 
英文關鍵字 Time Domain Inverse scattering  Finite Difference Time Domain  asynchronous particle swarm optimization 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文研究埋藏於三層空間中二維非均勻介質柱體的電磁影像重建。此研究以有限時域差分法 (FDTD) 為基礎,利用最佳化方法於時域中重建埋藏於三層空間中二維非均勻介質柱體之特性參數。為了探究埋藏於三層空間中未知的非均勻介質柱體,概念上吾人可向散射體發射電磁脈波/平面波,並量測其周圍的散射電磁波,再針對此量測散射電磁波分別以非同步粒子群聚法法(APSO)將逆散射問題轉化為求解最佳化問題。然而分別以族群大小為未知數(49)的3倍、5倍、以及10倍來模擬比較,本論文探討以非同步粒子群聚法法對於三層空間下的二維非均勻介質柱體逆散射問題的適用性。模擬結果顯示,即使最初的猜測值與實際散射體位置相距甚遠,此最佳化方法皆可以成功地重建出柱體的介電參數。使用非同步粒子群聚法法可以大幅減少計算正散射次數,並且減少逆散射問題收斂時間。
英文摘要 This paper presents the studies of microwave image reconstructions that are approached based on the time-domain technique (finite difference time domain, FDTD) and optimization method for 2-D inhomogeneous dielectric cylinders. The dielectric cylinder is buried in a slab media. For the forward scattering the FDTD method is employed to calculate the scattered E fields, while for the inverse scattering asynchronous particle swarm optimization (APSO) is utilized to determine the permittivity of the cylindrical scatterer with arbitrary cross section.
In order to explore the unknown dielectric cylinder in a three-layered slab medium, an electromagnetic pulse can be conducted to illuminate the cylinder, for which the scattered E fields can then be measured. The inverse problem is then resolved by an optimization approach. The idea is to perform the image reconstruction by utilization of Asynchronous Particle Swarm Optimization to minimize the discrepancy between the measured and calculated scattered field data. Three times,five times and ten times of the unknows population size are also investigated.
The suitability and efficiency of applying APSO for microwave imaging of 2D dielectric cylinders are examined in this dissertation. Numerical results show that even when the initial guesses are far away from the exact one, good reconstruction can be obtained by Asynchronous Particle Swarm Optimization. However, the APSO can reduce the convergent speed in terms of the number of the objective function calls.
論文目次 目錄
第一章
簡介………………………………………………………………...1
1.1 研究動機與相關文獻………………………………………………1 1.2 本研究之貢獻………………………………………………………6 1.3 各章內容簡述………………………………………………………6 第二章
時域有限差分法…………………………………………………...7
2.1 馬克斯威爾方程式………………………………………………....7
2.2 馬克斯威爾方程式於FDTD方法中差分離散現………………....10
2.2.1 Yee單胞(Yee cell)的空間解析方法與蛙跳式(leap-frog)時間步進計算方法………………………………………………………….10 2.2.2 FDTD更新方程式……………………………………………….12 2.3 數值色散現象與Courant穩定準則………………………………13 2.4 吸收邊界條件(Absorbing Boundary Conditions)………………...15 2.5 非同步粒子群聚最佳化法(Asynchronous Particle Swarm Optimization)…………………….…………………………….....17
第三章
埋藏於三層空間中二維均勻介質柱體影像建………………….26
3.1 模擬環境與相關參數設定………………………………………..26
3.2 目標函數與最佳化方法搜尋參數………………………………..27
3.3 數值模擬結果………………………..………………………28
第四章
結論………………………………………………………………...43
參考文獻....................................................44
圖目錄
圖2.1 FDTD中二維Yee單胞於TMz模態(左)與TEz模態(右)表示圖.11 圖2.2 FDTD中電磁場計算時序圖............................11 圖2.3 粒子群聚法流程圖..................................18 圖2.4 粒子群聚法中於二維目標函數等位線圖.................20 圖2.5 二維問題中,三種不同邊界條件示意圖。 與 表示更新後的粒子位置與速度.............................................22 圖2.6改良式粒子群聚法流程圖.............................25 圖3.1埋藏於三層空間中任意形狀非均勻介質柱體模擬環境示意圖27 圖3.2重建例子一之原始結構示意圖………………………………..30 圖3.3族群大小3倍重建例子一示意圖…………………….……..…31 圖3.4族群大小5倍重建例子一示意圖……………………………...31 圖3.5族群大小10倍重建例子一示意.........................32 圖3.6加入高斯雜訊後重建例子一示意圖………………………...33 圖3.7重建例子二之原始…………………………………….… ….35 圖3.8族群大小3倍重建例子二示意圖……………….…………….35 圖3.9族群大小5倍重建例子二示意圖…………… ……………….36 圖3.10族群大小10倍重建例子二示意圖…………………………..36 圖3.11加入高斯雜訊後重建例子二示意圖…………………………37 圖3.12重建例子三之原始……………………………………………39 圖3.13族群大小3倍重建例子三示意圖……………………………40
圖3.14族群大小5倍重建例子三示意圖……………………………40
圖3.15族群大小10倍重建例子三示意圖………………………..41
圖3.16加入高斯雜訊後重建例子三示意圖…………………....42
表目錄
表3.1三種倍數於例子一之相對誤差率統計數據分析……32
表3.2三種倍數於例子一之相對誤差率統計數據分析…………...37 表3.3三種倍數於例子三之相對誤差率統計數據分析………….…41
參考文獻 [1] F. Cakoni and D. Colton, “Open problems in the qualitative approach to inverse electromagnetic scattering theory,” European Journal of Applied Mathematics, pp. 1–15, 2004.
[2] C.E. Baum, Detection and Identification of Visually Obscured Targets, Taylor and Francis, Philadelphia, Oct. 1998.
[3] B. Borden, Radar Imaging of Airborne Targets, IOP Publishing, Bristol 1999.
[4] X. Li, S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1856–1865, Aug. 2004.
[5] Q. Fang, P. M. Meaney, and K. D. Paulsen, “Microwave imaging reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information,” IEEE Transactions on Microwave Theory and Techniques., vol. 52, no. 8, pp. 1866–1875, Aug. 2004.
[6] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. Bristol, U.K.: IOP Publishing Ltd., 1998.
[7] S. Caorsi, A. Massa, M. Pastorino, and A. Rosani, “Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1908–1916, Aug. 2004.
[8] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, vol. 6, pp. 635-641, Aug.1990.
[9] V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, vol. 9, pp. 579–621, 1993.
[10] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Science, vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[11] D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Archive for Rational Mechanics and Analysis, vol. 119, pp. 59–70, 1992.
[12] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1162-1173, Apr. 2003. [13] M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[14] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[15] K. Belkebir, R. Kleinmann, and C. Pichot, “Microwave imaging-Location and shape reconstruction from multifrequency data,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, pp. 469–475, April 1997. [16] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 1749–1756, July 2000.
[17] A. Baussard, “Inversion of multi-frequency experimental data using an adaptive multiscale approach,” Inverse Problems, vol. 21, pp. S15–S31, Dec. 2005.
[18] T. H. Chu and D. B. Lin, “Microwave diversity imaging of perfectly conducting objects in the near-field region,” IEEE Transactions on Microwave Theory Tech., vol. 39, pp. 480-487, March 1991.
[19] R. Car and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Problems, vol. 10, pp. 1217–1229, 1994.
[20] Charbonnier P, Blanc-Feraud L, Aubert G, Barlaud M. “Deterministic edge-preserving regularization in computed imaging,” IEEE Transactions on Image Processing, vol. 6, pp. 298-311, Feb. 1997.
[21] Sarkar, T.; Weiner, D.; Jain, V., “Some mathematical considerations in dealing with the inverse problem,” IEEE Transactions on Antenna and Propagation., vol. 29, pp. 373-379, March 1981.
[22] Chaturvedi, P.; Plumb, R.G., “Electromagnetic imaging of underground targets using constrained optimization,” IEEE Transactions on Antennas and Propagation, vol. 33, pp. 551-561, May 1995.
[23] Y. S. Chung, C. Cheon, and S. Y. Hahn, “Reconstruction of dielectric cylinders using FDTD and topology optimization technique,” IEEE Transactions on Magnetics, vol. 36, no. 4, July 2000.
[24] M. Moghaddam, W. C. Chew, “Nonlinear two-dimensional velocity profile inversion using time domain data,” IEEE Transactions on Geoscience and Remote Sensing, , vol. 30 , no. 1 , Jan. 1992.
[25] Wenhua Yu, Zhongqiu Peng and Lang Jen, “A fast convergent method in electromagnetic inverse scattering,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 11 , Nov. 1996.
[26] Y. M. Wang and W. C. Chew, “An iterative solution of two-dimensional electromagnetic inverse scattering problem,” International Journal of Imaging Systems Technology, vol. 1, pp. 100-108, 1989.
[27] O. S. Haddadin and E. S. Ebbini, “Imaging strongly scattering media using a multiple frequency distorted Born iterative method,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp. 1485–1496, Nov. 1998.
[28] Salvatore Caorsi, Antonio Costa, and Matteo Pastorino, “Microwave imaging within the second-order Born approximation: stochastic optimization by a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 1, pp. 22-31, Jan. 2001.
[29] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Transactions on Antennas and Propagation, vol. 17, pp. 308-314, 1969.
[30] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Transactions on Antennas and Propagation, vol. 30, pp. 980-989, Sep. 1982. [31] J. B. Keller, “Accuracy and validity of Born and Rytov approximations,” Journal of the Optical Society of America, vol. 59, pp. 1003-1004, 1969.
[32] K. P. Bube and R. Burridge, “The One-dimensional inverse problem of reflection seismology,” SIAM Review, vol. 25 no. 4, pp. 497-559, 1983.
[33] J. Sylvester, “On the layer stripping approach to a 1-D inverse problem,” Inverse Problems in Wave Propagation, New York: Springer-Verlag, pp. 453-462, 1997.
[34] J. Chang, Y. Wang, and R. Aronson, “Layer-stripping approach for recovery of scattering media from time-solved data,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, Ed. Bellingham, WA: SPIE, pp. 384-397, 1992.
[35] F. Santosa and H. Schwetlick, “The inversion of acoustical impedance profile by methods of characteristics,” Wave Motion, vol. 4, pp. 99-1101, 1982. [36] T. M. Habashy, “A generalized Gel’fand-Levitan-Marchenko integral equation,” Inverse Problems, vol. 7, pp. 703-711, 1991.
[37] R. F. Harrington, Field Computation by Moment Methods. New York, Macmillan, 1968.
[38] H. Harada, D. J. Wall, T. Takenaka, M. Tanaka, “Conjugate gradient method applied to inverse scattering problem,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 8, pp. 784-792, Aug. 1995.
[39] S. Bonnard, P. Vincent, and M. Saillard, “Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method”, IEEE Transactions on Antennas and Propagation, vol. 48, no. 3, pp. 393-400, March 2000.
[40] T. Takenaka, H. Jia, and T. Tanaka, “Microwave imaging of electrical property distributions by a forward-backward time-stepping method,” Journal of Electromagnetic Waves Application, vol. 14, pp. 1609–1625, 2000.
[41] I.T. Rekanos, “Time-domain inverse scattering using Lagrange multipliers: an iterative FDTD-based optimization technique,” Journal of Electromagnetic Waves and Applications, vol. 17, no. 2, pp. 271-289, 2003.
[42] S. Bonnard, P. Vincent and M. Saillard, “Cross-borehole inverse scattering using a boundary finite-element method”, Inverse Problems, vol. 14, pp. 521-534, 1998. [43] C. C. Chiu and Y. W. Kiang, “Microwave imaging of a Buried cylinder,” Inverse Problems, vol. 7, pp. 182-202, 1991.
[44] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Transactions on Antennas and Propagation, vol. 29, pp. 232-238, March 1981. [45] C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Transactions on Antennas and Propagation, vol. 40, pp. 933-941, Aug. 1992. [46] F Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems, vol. 10, pp. 375-385, 1994.
[47] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems, vol. 4, pp.749-770, Aug. 1988. [48] S. Gutman and M. Klibanov, “Iterative method for multi-dimensional inverse scattering problems at fixed frequencies,” Inverse Problems, vol. 10, pp.573-599, Aug. 1984.
[49] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Transactions on Medical Imaging, vol. 9, pp. 218-225, 1990.
[50] W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microwave Guided Wave Letters, vol. 2, issue 7 pp. 284-286, July 1992.
[51] W. H. Weedon and W. C. Chew, “Time-domain inverse scattering using the local shape function (LSF) method,” Inverse Problems, vol. 9, pp.551-564, Oct. 1993.
[52] C. C. Chiu and W. T. Chen, "Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm," IEEE Transactions on Microwave Theory and Techniques, vol. 48, Nov. 2000.
[53] S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes”, IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 4, pp. 1697-1708, July 2000.
[54] C. C. Chiu, C. L. Li and W. Chien, “Image reconstruction of a buried conductor by the genetic algorithm, ” IEICE Transaction on Electronics, vol. E84-C, no. 7, pp. 961-966, Dec. 2001.
[55] X.-M. Zhong, C Liao and W. Chen, “Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse,” Journal of Electromagnetic Waves Application,, vol. 21, no. 1, pp. 25-34, 2007.
[56] C. H. Huang, C. C. Chiu, C. L. Li, and Y. H. Li, “Image reconstruction of the buried metallic cylinder using FDTD method and SSGA,” Progress In Electromagnetics Research, PIER 85, 195-210, 2008.
[57] C. H. Huang, S. H. Chen, C. L Li and C. C. Chiu, “Time domain inverse scattering of an embedded cylinder with arbitrary shape using nearly resonant technique,” 2004 International Conference on Electromagnetic Applications and Compatibility, Taipei, Taiwan, Oct. 2004. [58] M. Donelli and A. Massa, ,”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, issue 5, pp. 1761 – 1776, May 2005
[59] T. Huang and A. S. Mohan, ” Application of particle swarm optimization for microwave imaging of lossy dielectric objects,” IEEE Transaction on Antennas and Propagation, vol. 1B, pp. 852 - 855 ,Dec. 2005.
[60] M. Donelli and G. Franceschini, A. Martini, A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problemsm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, issue 2, pp. 298 – 312, Feb. 2006
[61] G. Franceschini, M. Donelli, R. Azaro and A. Massa,;” Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach,” IEEE Transactions on Geoscience and Remote Sensing. vol. 44, issue 12, pp. 3527 - 3539, Dec. 2006.
[62] C. H. Huang, C. C. Chiu, C. L. Li, and K. C. Chen, “Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization,” Progress In Electromagnetics Research, PIER 82, pp. 381-400, 2008.
[63] A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” IEEE Transactions on Antennas and Propagations, vol. 51, Issue 6, pp. 1251-1262, June 2003.
[64] A. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” IEEE Transactions on. Antennas and Propagations, vol. 52, issue 5, pp. 1223-1229, May 2004.
[65] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, vol 44, issue 1, pp.116 - 125, Jan. 2006.
[66] T. Melamed, E. Heyman and L. B. Felsen, “Local spectral analysis of short-pulse excited scattering from weakly inhomogeneous media. II. inverse scattering”, IEEE Transactions on Antennas and Propagation, vol. 47, no. 7, July 1999.
[67] S. Gutmant and M. Klibanov, “Three-dimensional inhomogeneous media imaging,” Inverse Problems, vol. 10, pp. 39-49, Aug. 1994.
[68] A. Taflove and S. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Artech House, Boston, MA, 2000.
[69] J. P. Benerger, “A perfectly matched layer for the absorption of electromagnetic waves,”Journal of Computational Physics, vol. 114, pp 185-200, 1994.
[70] Z. S Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, vol. 43, pp 1460- 1463, Dec. 1995.
[71] C. L. Li, C. W. Liu and S. H. Chen, “Optimization of a PML absorber's conductivity profile using FDTD,” Microwave and Optical Technology Letters, vol. 37 no. 5, pp. 69-73 , June 2003.
[72] M. Clerc, J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, issue 1. pp. 58~73, 2002
[73] Wang, A.; Zhe Wang; Dan Lv; Zhizhen Fang, “esearch on a novel non-rigid registration for medical image based on SURF and APSO,” International Congress on Image and Signal Processing , vol. 6, issue 1. pp. 2628 - 2633
[74] T. Huang and A. S. Mohan, “A hybrid boundary condition for robust particle swarm optimization,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 112-117, 2005.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信