淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1707201210033800
中文論文名稱 半空間多導體之微波成像
英文論文名稱 Microwave imaging for buried multiple conductors
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 蘇千華
研究生英文姓名 Chien-Hua Su
學號 699440482
學位類別 碩士
語文別 中文
口試日期 2012-06-19
論文頁數 71頁
口試委員 指導教授-丘建青
委員-張道治
委員-丘建青
委員-李慶烈
委員-唐震寰
委員-林丁丙
中文關鍵字 多導體  微波成像  非同步粒子群聚最佳化法 
英文關鍵字 Microwave imaging  multiple conductors  half space  APSO 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文探討改良式粒子群聚法則應用於掩埋二維雙導體之逆散射問題。針對物體照射極化波之情況,在半空間中雙導體的逆散射進行探討。
利用在導體表面的邊界條件及在物體外部量測的散射電場,可推導出一組非線性積分方程,將散射場積分方程式透過動差法求得散射電場相關資訊。在此使用傅立葉極數展開及描述物體的形狀,並在演算法中使用改良式粒子群聚法重建埋藏雙導體之形狀。
利用傅立葉級數展開描述物體形狀及適當的選取演算法中的參數形式,同時結合所求的散射公式,可得到每一代所計算之散射場值,並利用這些散射場值的相關資訊,將電磁成像問體轉換為最佳化問題,藉由改良式粒子群聚最佳化演算法進行重建,求得埋藏導體之形狀。
因此,在數值模擬顯示中,即使最初的猜測值與實際相差甚遠,以及兩個導體之間多成散射效應非常嚴重,依然可求得準確的數值解,成功的重建出物體的形狀函數,當量測的散射場值中有雜訊存在時,透過數值模擬仍可得到良好的重建結果。
英文摘要 This paper presents an inverse scattering problem for recovering the shape of multiple conducting cylinders with the immersed targets in a half space by Asynchronous particle swarm optimization (APSO). Two separate perfect-conducting cylinders of unknown shapes are buried in one half-space and illuminated by the transverse magnetic(TM) plane wave from the other half space.
Based on the boundary condition and the measured scattered field, a sat of nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem.
The Asynchronous particle swarm optimization algorithm is employed to find out the global extreme solution of the object function. Numerical results demonstrate even when the initial guesses are far away from the exact shapes, and then the multiple scattered fields between two conductors are serious the good reconstruction can be obtained.
In addition, the effect of Gaussian noise on the reconstruction result is investigated and through the numerical simulation shows that we can still get good results of reconstructions.
論文目次 目錄
第一章 簡介……………………………………………………………1
1.1節 研究動機與相關文獻…………………………………......1
1.2節 本研究之貢獻……………………...……………………...9
1.3節 各章內容簡述……………………………………………..9
第二章 多導體在半空間中的逆散射理論…………………………11
2.1節 正散射的理論公式推導…………..……..……...……….11 2.2節 數值方法………………………………………………….15
2.2.1節 動差法於積分方程式的應用……………………….15
2.2.2節 非同步粒子群聚最佳化法…………………….……17
2.3 最佳化方法測試…………………………………………..22
第三章 數值模擬結果…………………………………………..……38
3.1節 Fourier series描述重建的形狀之數值模擬……………..38
第四章 結論…………………………………………………………..58
附錄一 計算格林函數的方法………………………………………..60
參考文獻………………………………………………………………..63


圖目錄
圖2-1 二維雙導體在半空間的示意圖………………………………15
圖2-2 改良式粒子群聚法流程圖……………………………………20
圖 2-3 二維問題中,不同邊界條件示意圖….……………………...22
圖 2-4 測試函數函數圖形…………………………….…….…….....24
圖 2-5 Sphere使用非同步粒子群聚法之收斂情況……….……….28
圖 2-6 Axis parallel hyper-ellipsoid使用非同步粒子群聚法之
收斂情況………………………………………………………29
圖 2-7 Quadric使用非同步粒子群聚法之收斂情況…………………30
圖 2-8 Griewank 使用非同步粒子群聚法之收斂情況………………31
圖 2-9 Rosebrock使用非同步粒子群聚法法之收斂情………………32
圖 2-10 Ackley使用非同步粒子群聚法之收斂情況…………………33
圖 2-11 Generalized Schwefel’s Problem使用非同步粒子群聚法之收
斂情況…………………………………………………………34
圖 2-12 Rastrigin使用非同步粒子群聚法之收斂情況……………35
圖 2-13 Weierstrass使用非同步粒子群聚法之收斂情況……………36
圖 3-1(a) 例子1雙導體在半空間的形狀函數的重建情形。實線代表實際的形狀函數,星狀線(*)代表第1世代猜測的形狀,虛線(-x-)代表最後所重建之圖形。……………………..41

圖 3-1(b) 例子1物體在基因演算法中每個世代重建的DR值的變化情形………………………………………………………..42
圖 3-1(c) Function calls 與參數相對誤差變化趨勢圖……..………43
圖 3-1(d) 例子1雙導體在半空間兩物體距離小為一波長形狀函數的
重建情形。實線代表實際的形狀函數,星狀線(*)代表第1
世代猜測的形狀,虛線(-x-)代表最後所重建之圖形。….44
圖 3-1(e) 兩物體小於一個波長時Function calls與參數相對誤差之變
化趨勢………………………………………………………45
圖 3-2(a) 例子2雙導體在半空間的形狀函數的重建情形。實線代表實際的形狀函數,星狀線(*)代表第1世代猜測的形狀,虛線(-x-)代表最後所重建之圖形。……………………..47

圖 3-2(b) 例子2物體在基因演算法中每個世代重建的DR值的變化情形………………………………………………………..48
圖 3-2(c) Function calls 與參數相對誤差變化趨勢圖……..………49
圖 3-2(d) 例子2雙導體在半空間兩物體距離小為一波長形狀函數的
重建情形。實線代表實際的形狀函數,星狀線(*)代表第1
世代猜測的形狀,虛線(-x-)代表最後所重建之圖形。….50
圖 3-2(e) 兩物體小於一個波長時Function calls與參數相對誤差之變
化趨勢………………………………………………………51
圖 3-3(a) 例子3雙導體在半空間的形狀函數的重建情形。實線代表實際的形狀函數,星狀線(*)代表第1世代猜測的形狀,虛線(-x-)代表最後所重建之圖形。……………………..53

圖 3-3(b) 例子3物體在基因演算法中每個世代重建的DR值的變化情形………………………………………………………..51
圖 3-3(c) Function calls 與參數相對誤差變化趨勢圖……..………55
圖 3-3(d) 例子3雙導體在半空間兩物體距離小為一波長形狀函數的
重建情形。實線代表實際的形狀函數,星狀線(*)代表第1
世代猜測的形狀,虛線(-x-)代表最後所重建之圖形。….56
圖 3-3(e) 兩物體小於一個波長時Function calls與參數相對誤差之變
化趨勢………………………………………………………57

表目錄
表 2-1 測試函數(benchmark functions)表………….……………...23
表2-2利用非同步粒子群聚法測試九種測試函數的結果…………37
參考文獻 參考文獻
[1] E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2] O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3] S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[5] A. Kirsch, “ An Introduction to the Mathematical Theory of Inverse Problems,” New York: Springer-Verlag, 1996.
[6] A. M. Denisov, “ Elements of Theory of Inverse Problems,” Utrecht, The Netherlands: VSP, 1999.
[7] A. Baussard, “Inversion of multi-frequency experimental data using an adaptive multiscale approach,” Inverse Problems, Vol. 21, pp. S15–S31, Dec. 2005.
[8] M. M. Nikolic, M. Ortner, A. Nehorai and A.e R. Djordjevic, “An Approach to Estimating Building Layouts Using Radar and Jump-Diffusion Algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, pp. 768-776, Mar., 2009.
[9] P. Mojabi and J. LoVetri, “Overview and Classification of Some Regularization Techniques for the Gauss-Newton Inversion Method Applied to Inverse Scattering Problems,” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, pp. 2658-2665, Setp. 2009.
[10] A. Abubakar, P. M. V. D. Berg and S. Y. Semenov, “A Robust Iterative Method for Born Inversion,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 2, Feb. 2004.
[11] S. Caorsi, A. Costa and M. Pastorino, “Microwave imaging within the second-order Born approximation: stochastic optimization by a genetic algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, pp. 22-31, Jan. 2001.
[12] R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.

[13] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[14] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[15] D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[16] D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[17] M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[18] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[19] G. W. Hohmann, "Electromagnetic scattering by conductors in the earth near a line source of current," Geophysics, vol. 36, pp. 101-131,Feb. 1971.
[20] N. Osumi and K. Ueno, "Microwave holographic imaging of underground objects," IEEE Trans. Antennas Propagat., vol. AP-33,pp. 152-159, Feb. 1985.
[21] L. Chommeloux, C. Pichot, and J. C. Bolomey, "Electromagnetic modeling for microwave imaging of cylindrical buries inhomogeneities," IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1064-1076, Oct. 1986.
[22] B. Duchene, D. Lesselier, and W. Tabbara, "Acoustical imaging of 2D fluid targets buried in a half-space: a diffraction tomography approach," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. UFFC-34, pp. 540-549, Sept. 1987.
[23] W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommelous,and N. Joachimowicz, "Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics, "Inverse Problems, vol. 4, pp. 305- 331, May 1988.
[24] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[25] Hung-Yi Li, ”Solution of inverse blackbody radiation problem with conjugate gradient method,” IEEE Trans. Antennas Propagate., vol. 53, issue 5, pp.1840-1842, May. 2005.
[26] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagate., vol. AP-29, pp.232-238, Mar. 1981.
[27] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[28] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems., vol. 4, pp.749-770, Aug. 1988.
[29] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems., vol. 10, pp. 375-385, 1994.
[30] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity using the distorted Born iterative method,” IEEE Trans. Med. Imag., vol. 9, pp.218-225, 1990.
[31] C. C. Chiu and Y. W. Kiang, “Microwave imaging of a Buried cylinder,” Inv. Probl., vol. 7, pp. 182-202, 1991.
[32] X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
[33] ‘A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[34] R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[35] A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[36] A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[37] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
[38] K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[39] I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[40] A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[41] G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[42] M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
[43] T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
[44] M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
[45] M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[46] A. K. Hamid and M. Alsunaidi, “Inverse scattering by dielectric circular cylindrical scatterers using a neural network approach,” in 1997 IEEE Int. Symp. Antennas Propagat., Montreal, QC, Canada, pp. 2278-2281, July 1997.
[47] F. C. Morabito, A. Formisano and R. Martone, “Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems,” IEEE Trans. Magn., vol. 34, pp. 2968-2971, May 1998.
[48] Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[49] S. Caorsi and A. Massa “A microwave-imaging technique for electromagnetic exposure prediction: preliminary results,” Microwave and Optical Technology Letters, vol. 19, no. 5, pp. 328-332, Dec 5 1998.
[50] W. Wang and S. Zhang , “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Antennas Propagat., vol. 40, pp. 1292-1296, Nov. 1992.J. Kennedy and R. C. Eberhart,” Particle Swarm Optimization,” Proceedings of the IEEE International Conference on Neural Network, pp. 1942 - 1948, 1995.
[51] “A practical guide to splines,” New York: Spring-Verlag, 1987.
[52] A. Carlisle and G. Dozier, “An off-the-shelf PSO,” Proc. of the Workshop on Particle Swarm Optimization, Indianapolis, April 2001.
[53] T. Huang and A. S. Mohan, “A hybrid boundary condition for robust particle swarm optimization,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 112-117, 2005.
[54] Andrea Massa, Davide Franceschini, Gabriele Franceschini, Matteo Pastorino, Micro Raffetto, and Massimo Doneli, “Parallel GA-based approach for microwave imaging applications,” IEEE Trans. Antennas Propag., vol. 53, no.10, pp. 3118-3127, Oct. 2005.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-19公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-19起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信