淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1707200823594600
中文論文名稱 土質參數折減係數應用於液化影響樁基礎之波動方程分析
英文論文名稱 Wave Equation Analysis on Piles affected by Liquefaction Using Soil Parameter Reduction Coefficients
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 李漢珽
研究生英文姓名 Han-Ting Lee
學號 695380880
學位類別 碩士
語文別 中文
口試日期 2008-06-25
論文頁數 208頁
口試委員 指導教授-張德文
委員-陳正興
委員-李維峰
中文關鍵字 液化潛能評估  土質參數折減係數  波動方程  樁基礎 
英文關鍵字 liquefaction potential analysis  soil parameter reduction coefficient  wave equation  pile foundation 
學科別分類 學科別應用科學土木工程及建築
中文摘要 本研究之土質參數折減係數模式,係以一維波動方程模擬地盤液化狀態下之樁基礎動力反應,依據現場土層鑽探資料與鄰近測站之地震紀錄,由土壤液化潛能評估法配合日本相關規範求得液化土層之土質參數折減係數,以此係數對土壤強度模數進行折減,並使用集中質塊法求取自由場之地盤液化反應,再以此為前置解作用於樁基礎之波動方程求解,樁身剛度以簡化之Bouc-Wen模式模擬其非線性行為,以瞭解液化地盤內基樁之變形行為與破壞機制。本研究另與ABAQUS有限元素法軟體及日本地震時之基樁破壞案例驗證本模式之合理性。
研究結果顯示:(1)液化土層中,土質參數折減係數值變化處易發生基樁變形之轉折點,而衍生較大之內力致使基樁發生破壞;(2)觀察發現,基樁之最大位移易發生於樁頂,其最大彎矩常發生於液化層下方交界處而造成破壞,且損害形式可能以不同型態方式發生;(3)由參數研究可知,SPT-N值液化潛能評估方法中,以日本道路協會簡易經驗法(1996)評估結果最為保守,NCEER修正之Seed簡易經驗法(1997)次之,Tokimatsu and Yoshimi簡易經驗法(1983)評估之地盤液化潛能最低。分析時,若各液化潛能評估法所得之液化層厚度相近,則土質參數折減係數對樁頂最大位移之影響較小,對內力影響較大;(4)影響基樁行為之因子中,以地盤種類影響最大,最大地表加速度次之,地下水位及細粒料含量影響最小;另外,基樁之樁身土壤彈簧及阻尼對樁基礎變形影響較小,對內力變化影響較大;(5)由實際案例研究發現,NCEER修正之Seed液化潛能評估法較能符合實際案例情形,故建議可以NCEER法作為主要之液化潛能評估方法;(6)本研究建立之土質參數折減係數模式,可涵蓋土層液化時之弱化現象,清楚掌握地盤液化反應與樁基礎之動力行為,有助於提供樁基礎耐震分析使用。
英文摘要 This study uses the soil parameter reduction coefficients to model the seismic pile responses affected by liquefied soils. One dimensional wave equation analyses were conducted for the solutions. Based on the bore-hole data and nearby seismic record, the soil parameter reduction coefficients of liquefied layers can be obtained through a pre-analysis for liquefaction potential of the site. The reduction coefficients were used to reduce the soil modulus for liquefied soils, and the lumped mass analysis is performed to obtain the free-field response of the site. The ground deformations are superimposed onto the pile elements for discrete wave equation analysis, and the non-linear pile responses can be simulated through the modified Bouc-Wen model. Thus the deformations and failure mechanism of the pile are able to investigate. This analysis is also validated by linear ABAQUS analysis and the case studies of pile failure due to earthquake in Japan.
  The results of this study are concluded as follows: (1) In the liquefied layers, the sharp changes of soil parameter reduction coefficients may cause greater internal forces to occur and the failure of pile. (2) Largest pile displacements would occur at the pile head. A very large bending moment of the pile that exceeds the ultimate moment of the pile would occur at the interface between the liquefied layer and the underneath non-liquefiable layer. Damage pattern might occur in many ways. (3) For liquefaction potential analyses based on SPT-N values, it is found that the NJRA (1996) method is the most conservative one, where the T&Y (1983) method is the optimistic one. The NCEER (1997) method ends up in the median; In the analyses, if the thickness of liquefied layers are about the same, the reduction coefficient will affect significantly the internal forces of the pile, and relatively insignificant to the pile displacements. (4) For the influence factors on the pile behavior, the ground stiffness has the most influence. PGA is the 2nd significant one. Ground water table and fine content of soil have smaller effects. Furthermore, soil spring and damping have minor influences on pile’s deformations, but they are sensitive to the internal pile forces. (5) The NCEER method is found to provide comparative results to the field observations of the case studies, therefore it is suggested to use NCEER in the corresponding analysis. (6) The reduction coefficient model is rather simple to simulate degradation of the soil modulus, it is conjunct with the liquefaction potential analysis of the site and coincident with common geotechnical engineering practice. This model would be very helpful to the seismic performance analysis of the pile foundations.
論文目次 中文摘要
英文摘要
本文目錄 I
表目錄 III
圖目錄 IV

第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法與內容 2

第二章 研究背景 4
2-1 前言 4
2-2 土壤液化之發生機制與影響因素 6
2-2-1 土壤液化之定義與發生機制 7
2-2-2 影響土壤液化情形之因素 12
2-2-3 結構物受液化損壞之類型 17
2-3 液化潛能評估法與土質參數折減係數應用 21
2-3-1 液化潛能評估法回顧 21
2-3-2 NCEER修正之Seed簡易經驗法 31
2-3-3 Tokimatsu and Yoshimi簡易經驗法 37
2-3-4 日本道路協會簡易經驗法 42
2-3-5 土質參數折減係數規範 48
2-4 波動方程於樁基礎受地震反應之發展與應用 50
2-4-1 前期研究發展概述 50
2-4-2 自由場反應分析 54
2-4-3 波動方程基本分析架構 66
2-4-4 樁基礎受地震作用時之波動方程分析 75
2-5 樁身破壞機制與非線性行為模擬方法 83
2-5-1 土壤液化對樁基礎之影響 83
2-5-2 樁身破壞機制 85
2-5-3 樁基礎非線性行為模擬方法 94

第三章 模式說明與驗證 101
3-1 前言 101
3-2 土質參數折減係數應用程式分析方法與程序 102
3-3 ABAQUS有限元素法軟體分析結果與比對 114

第四章 液化影響之參數研究 119
4-1 前言 119
4-2 假設案例與參數說明 120
4-3 樁基礎受液化影響之行為研究 126
4-4 液化潛能評估方法比較 149

第五章 實際案例分析 153
5-1 前言 153
5-2 案例一 NHK Building 154
5-3 案例二 Tank TA72 172

第六章 結論與建議 194
6-1 結論 194
6-2 展望與建議 197

參考文獻 198


表 目 錄

表2-1 初步研判土層液化潛能之參數 23
表2-2 國內現行設計規範對土壤液化之相關規定
(摘自 翁作新等人,2004) 27
表2-3 各液化潛能評估簡易經驗法之比較(摘自 陳銘鴻等人,2002) 28
表2-4 SPT傳遞能量百分比(摘自 Seed et al., 1985) 34
表2-5 依地震規模之Cs建議值 (吳偉特,1997) 40
表2-6 日本道路協會新舊土壤液化評估方法之比較
(摘自 黃俊鴻和陳正興,1998) 43
表2-7 不同種類地盤之標準設計水平震度kh0(日本道路協會, 1996) 45
表2-8 日本建築學會規範(1988)之土質參數折減係數DE 49
表2-9 日本道路協會規範(1990)之土質參數折減係數DE 49
表2-10 日本道路協會規範(1996)之土質參數折減係數DE 49
表2-11 地盤反力係數(常數)經驗值(Johnson, 1968) 73
表2-12 最小旋轉半徑計算表(摘自Bhattacharya et al., 2004) 93
表3-1 Bowles(1988)估算土壤楊氏模數經驗式 106
表3-2 各樁徑與α、z參數關係表 111
表3-3 ABAQUS模擬之土壤材料參數 116
表3-4 ABAQUS模擬之基樁材料參數 116
表3-5 兩種數值解之分析時程比較及分析系統說明 117
表4-1 參數研究對照表 125
表4-2 參數研究結果統整 131
表4-3 各液化潛能評估法對地盤液化情形之分析結果 150
表5-1 NHK大樓土壤的基本性質(摘自 林三賢等人,2005) 157
表5-2 NHK大樓基樁的基本性質(摘自 林三賢等人,2005) 157
表5-3 各液化潛能評估法分析結果(NHK Building) 160
表5-4 土質參數折減係數模式輸入參數(NHK Building) 164
表5-5 人工回填島之土壤參數表(摘自 黃俊鴻等人,2006) 173
表5-6 Tank TA72基樁材料性質參數 173
表5-7 各液化潛能評估法分析結果(Tank TA72) 181
表5-8 土質參數折減係數模式輸入參數(Tank TA72) 185


圖 目 錄

圖1-1 研究流程圖 3
圖2-1 液化示意圖(重繪自Ishihara, 1985) 6
圖2-2 飽和沙土不排水試驗液化潛能狀態示意圖
(重繪自 Castro, 1969) 7
圖2-3 流動液化發生機制示意圖(重繪自 Kramer, 1996) 9
圖2-4 反覆流動性發生機制示意圖(重繪自 Kramer, 1996) 11
圖2-5(a) 結構體均勻下陷示意圖(摘自 巫秀星,2005) 19
圖2-5(b) 結構體傾斜破壞示意圖(摘自 巫秀星,2005) 19
圖2-5(c) 結構體上浮破壞示意圖(摘自 巫秀星,2005) 19
圖2-5(d) 斜坡破壞示意圖(摘自 巫秀星,2005) 19
圖2-5(e) 地層滑動破壞示意圖(摘自 巫秀星,2005) 19
圖2-5(f) 側向流導致之破壞示意圖(摘自 巫秀星,2005) 19
圖2-6(a) 結構物張力型破壞示意圖(重繪自 鄭文隆,1985) 20
圖2-6(b) 結構物簡支梁型破壞示意圖(重繪自 鄭文隆,1985) 20
圖2-6(c) 結構物懸臂梁型破壞示意圖(重繪自 鄭文隆,1985) 20
圖2-7 土壤液化評估方法之分類(摘自 巫秀星,2005) 22
圖2-8 NCEER修正之Seed簡易經驗法(1997)分析流程圖 35
圖2-9 NCEER修正之Seed簡易經驗法之臨界液化強度曲線
(摘自 Youd and Idriss, 2001) 36
圖2-10 各國學者建議之地震規模修正因子MSF之比較
(摘自 Youd and Idriss, 2001) 36
圖2-11 Tokimatsu與Yoshimi簡易經驗法(1983)分析流程圖 41
圖2-12 日本道路協會簡易經驗法(1996)分析流程圖 47
圖2-13 自由場集中質塊分解模擬示意圖 55
圖2-14 地盤轉換理論分析法模型示意圖 58
圖2-15 地盤轉換函數分析流程圖 59
圖2-16(a) 基線修正前之速度與位移歷時圖 62
圖2-16(b) 基線修正後之速度與位移歷時圖 62
圖2-17 Chi-Chi地震下自由場分析數值解之比較 64
圖2-18 El-centro地震下自由場分析數值解之比較 65
圖2-19 受地震加速度擾動之SDOF系統 69
圖2-20 間接分析法示意圖(摘自 鄭世豪,2004) 71
圖2-21 樁基礎結構系統受震模擬示意圖 75
圖2-22 側向單樁結構系統分解模擬與節塊元素力平衡示意圖 76
圖2-23(a) 樁頂之節點編號 78
圖2-23(b) 樁頂內緣一點之節點編號 78
圖2-24(a) 樁頂之邊界條件-鉸接 78
圖2-24(b) 樁頂之邊界條件-固接 78
圖2-25(a) 樁底之節點編號 81
圖2-25(b) 樁底內緣一點之節點編號 81
圖2-26 液化土層中樁-土-結構互制示意圖(摘自 林伯勳,2006) 85
圖2-27 箍筋圍束下混凝土應力與應變模式
(重繪自Kent and Park, 1971) 87
圖2-28 典型基樁之彎矩與曲率關係圖 89
圖2-29 鋼筋混凝土結構之損害分類圖(重繪自Luo et al., 2002) 89
圖2-30 樁體彎曲特性三線性模式 89
圖2-31 樁體彎曲特性雙線性模式 89
圖2-32 基樁破壞機制模式(摘自Bhattacharya et al., 2004) 90
圖2-33 工程設計中之樁長與樁徑關係圖(摘自Bond, 1989) 92
圖2-34 蒐集案例之有效細長比(摘自Bhattacharya et al., 2004) 92
圖2-35 有效樁長示意圖(摘自Bhattacharya et al., 2004) 93
圖2-36 Diado混凝土彎曲試驗法(重繪自Meyersohn, 1994) 95
圖2-37 試樁之彎矩與曲率關係圖(摘自Meyersohn, 1994) 95
圖2-38 矩形斷面混凝土與鋼筋之彎矩曲率分析示意圖 97
圖2-39 基樁之等值線性模式(摘自Cubrinvoski et al., 2004) 98
圖2-40 鋼筋混凝土之撓度變化
(摘自Arthur H. Nilson et al., 2003) 100
圖2-41 慣性矩Icr對彎矩-轉角關係的影響(摘自楊宗勳, 2000) 100
圖3-1 土質參數折減係數模式分析流程圖 102
圖3-2 Microsoft® Office Excel液化潛能評估示意圖 103
圖3-3 自由場分析流程圖 104
圖3-4 樁基礎分析流程圖 107
圖3-5 樁身剛度折減示意圖 111
圖3-6 彎矩回歸分析結果 112
圖3-7 曲率回歸分析結果 113
圖3-8 ABAQUS有限元素法軟體分析流程圖 114
圖3-9 土壤液化下單樁之有限元素幾何網格圖 115
圖3-10 El-centro地震時之地表位移歷時反應 118
圖3-11 El-centro地震時之樁頂位移歷時反應 118
圖4-1 標準案例之基樁與地盤剖面圖 122
圖4-2 921地震加速度歷時圖(TCU110) 123
圖4-3 331地震加速度歷時圖(TCU110) 123
圖4-4 修正後921地震加速度歷時圖 124
圖4-5 修正後331地震加速度歷時圖 124
圖4-6 標準案例未液化之基樁反應 132
圖4-7 參數研究分析結果(標準案例) 133
圖4-8 參數研究分析結果(Modified 331地震) 134
圖4-9 參數研究分析結果(PGA為0.1g) 135
圖4-10 參數研究分析結果(PGA為0.45g) 136
圖4-11 參數研究分析結果(PGA為0.75g) 137
圖4-12 參數研究分析結果(地下水位0m) 138
圖4-13 參數研究分析結果(地下水位4m) 139
圖4-14 參數研究分析結果(細粒料含量為20%) 140
圖4-15 參數研究分析結果(細粒料含量為40%) 141
圖4-16 參數研究分析結果(普通地盤,SPT-N值為18) 142
圖4-17 參數研究分析結果(堅實地盤,SPT-N值為40) 143
圖4-18 參數研究分析結果(樁長為13m) 144
圖4-19 參數研究分析結果(樁身勁度為80%) 145
圖4-20 參數研究分析結果(樁身阻尼為120%) 146
圖4-21 參數研究分析結果(樁身勁度與阻尼為80%與120%) 147
圖4-22 參數研究分析結果(上部載重為800kN) 148
圖5-1 液化後新潟地區永久位移量分佈圖(摘自Hamada, 1992) 155
圖5-2 現場調查斷樁破壞圖(摘自Hamada, 1992) 156
圖5-3 樁基礎破壞模式及簡化分析模式(NHK Building) 156
圖5-4 樁身位移與彎矩值分佈圖(摘自Meyersohn, 1994) 158
圖5-5 樁身位移與彎矩值分佈圖(摘自 林三賢等人, 2005) 158
圖5-6 新潟地震(1964)加速度歷時曲線圖 159
圖5-7 土質參數折減係數, DE(NHK Building) 161
圖5-8 基樁最大位移剖面圖(NHK Building) 165
圖5-9 樁身於不同時間下之位移剖面圖(NHK Building) 166
圖5-10 樁身於不同時間下之彎矩剖面圖(NHK Building) 167
圖5-11 樁身於不同時間下之剪力剖面圖(NHK Building) 168
圖5-12 樁身位移歷時反應圖(NHK Building) 169
圖5-13 樁身彎矩歷時反應圖(NHK Building) 170
圖5-14 樁身剪力歷時反應圖(NHK Building) 171
圖5-15 Mikagehama Island地理位置圖(摘自Ishihara, 2003) 174
圖5-16 人工島上儲油槽Tank TA72位置示意圖
(摘自 Ishihara and Cubrinovski, 2004) 174
圖5-17 地盤側向變形量(摘自Ishihara and Cubrinovski, 2004) 175
圖5-18 液化後堤岸移動示意圖
(摘自Ishihara and Cubrinovski, 2004) 175
圖5-19 儲油槽結構剖面與土層分佈概況
(摘自Ishihara and Cubrinovski, 2004) 176
圖5-20 群樁基礎與擠壓砂樁之配置示意圖
(摘自Ishihara and Cubrinovski, 2004) 177
圖5-21 高強度預鑄混凝土樁之彎矩-曲率圖
(摘自Ishihara and Cubrinovski, 2004) 177
圖5-22 No.2基樁之側向位移及樁身損害示意圖
(摘自Ishihara and Cubrinovski, 2004) 178
圖5-23 No.9基樁之側向位移及樁身損害示意圖
(摘自Ishihara and Cubrinovski, 2004) 179
圖5-24 神戶地震(1995)加速度歷時曲線圖 180
圖5-25 土質參數折減係數, DE(Tank TA72) 182
圖5-26 基樁最大位移比較剖面圖(Tank TA72) 186
圖5-27 樁身於不同時間下之位移剖面圖(Tank TA72) 187
圖5-28 樁身最大彎矩比較剖面圖(Tank TA72) 188
圖5-29 樁身於不同時間下之彎矩剖面圖(Tank TA72) 189
圖5-30 樁身於不同時間下之剪力剖面圖(Tank TA72) 190
圖5-31 樁身位移歷時反應圖(Tank TA72) 191
圖5-32 樁身彎矩歷時反應圖(Tank TA72) 192
圖5-33 樁身剪力歷時反應圖(Tank TA72) 193
參考文獻 1. Ambraseys, N. N. (1988), “Engineering Seismology,” Earthquake Engineering and Structure Dynamics, 17, pp. 1-105.
2. ACI Committee 318 (1995), Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI318R-95), American Concrete Institute.
3. Bowles, J.E. (1988), “Foundation Analysis and Design,” 4rd.,Mcgraw-Hill Int. Book Co., New York.
4. Bond, A. J. (1989), “Behaviour of Displacement Piles in Overconsolidated Clays,” Doctor’s dissertation, Imperial College, London.
5. Berrill, J. B., Christensen, S. A. Keena, R. P., Okada, W. and Perringa, J. R. (2001), “Case Study of Lateral Spreading Forces on Piled Foundation,” Geotechnique Vol. 51, No. 6, pp. 501-517.
6. Bhattacharya, S., Madabhushi, S. and Bolton, M.D. (2004), “An alternative mechanism of pile failure in liquefiable deposits during earthquakes,” Geotechnique, 54 (3), pp. 203-213.
7. Bhattacharya, S., Bolton, M. D. and Madabhushi, S. P. G.. (2005), “A Reconsideration of the Safety of Piled Bridge Foundation in Liquefiable Soils,” Soils and Foundations, Vol. 45, No. 4, pp. 13-25.
8. Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics 1925-1940, BSCE, pp. 257-276.
9. Castro, G.. (1969), “Liquefaction of Sands,” Doctor’s dissertation, Harvard University, USA.
10. Castro, G., and Poulos, S. J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 501-516.
11. Chung, K. Y. C., and Wong, I. H. (1982), “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp. 887-897.
12. Chang, D. W. (1995), “Preliminary Investigation of Using Transformed Damping Coefficients in Time Domain Analysis, ” Procds., 7th Int. Conf. on Soil Dynamics and Earthquake Engineering, Greece , pp. 623-632.
13. Chang, D. W. and Yeh, S. H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping,” Soils and foundations, JGS. , Vol. 39, No. 2, pp. 31-44.
14. Chang, D. W., Roesset, J .M. and Wen, C. H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios,” Soil Dynamic and Earthquake Engineering, Vol. 19, pp. 551-558.
15. Dobry, R. and Gazetas, G. (1988), “Simple Method for Dynamic Stiffness and Damping of Floating Pile Groups,” Geotechnique 38, No.4, pp.557-574.
16. Eurocode 8 part5 (1998), Design Provisions for Earthquake Resistance of Structure-foundations, Retaining Structures and Geotechnical Aspects, European Committee for Standardization, Brussels.
17. Finn, W. D. L., Byrne, P. M. and Martin, G. R. (1976), “Seismic Response and Liquefaction of Sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT8, pp. 841-856.
18. Finn, W. D. L., Lee, K.W. and Martin, G. R. (1977), “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. SM7, pp. 657-692.
19. Finn, W. D. L. (1982), “Soil liquefaction studies in the People’s Republic of China,” Soil Mechanics-Transient and Cyclic Loads, Ch.22, pp. 609-626, John Wiley & Sons, Ltd.
20. Guo, T. and Prakash S. (2000), “Liquefaction Silt-Clay Mixtures,’’ Proc. 11 World Conf. On Earthquake Engineering Auckland NZ, CD ROM.
21. Hamada M. (1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCEER, Buffalo, NY, USA. 3.1-3.123.
22. Hutchinson, T. C., Chai, Y. H., Boulanger, R. W. and Idriss, I. M. (2001), “Inelastic Seismic Resopnse of Extended Pile Shaft Supported Bridge Structures,” Earthquake Spestra, pp.1-32.
23. Idriss, I. M., and Seed, H. B. (1968), “Seismic Response of Horizontal Soil Layers,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031.
24. Ishihara, K., Sodekawa, M., and Tanaka, Y. (1978), “Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamics Geotechnical Test, ASCE, STP 654, ASTM, pp. 246-264.
25. Iwasaki, T., Arakawa, T., & Tokida, K. (1982), “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 925-939.
26. Ishibashi, I. M., Sherlif, M. A., & Cheng, W. L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, 22(1), pp. 37-48.
27. Ishihara, K. (1985), “Stability of Natural Depsoit during Earthquake,” Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376.
28. Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquake,” Journal of the Geotechnical Engineering, ASCE, Vol. 43, No. 3, pp. 351-415.
29. Ishihara, K. (2003), “Liquefaction-induced Lateral Flow and Its effects on Foundation Piles,”5th National Conference on Earthquake Engineering, Istanbul Turkey, May. 28.
30. Ishihara, K. and Cubrinovski, M. (2004), “Case Studies on Pile Foundations undergoing Lateral Spreading in Liquefied Deposits,” Proceeding of 5th International Conference on Case Histories in Geotechnical Engineering, New York, Paper SOAP 5.
31. Kent, D. C, and Park, R. (1971), “Flexural member with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
32. Kunnath, S.K. and Reinhorn, A.M. (1989), “Inelastic Three-Dimensional Response Analysis of RC Buildings (IDARC-3D) Part I - Modeling,” Technical Report NCEER-89-0009, National Center for Earthquake Engineering Research, SUNY/Buffalo.
33. Kramer, S.L. (1996), “Geotechnical Earthquake Engineering,’’ Prentice Hall, Inc., Upper Saddle River, New Jersey, pp.348-368.
34. Kagawa, T., Taji, Y., Sato, M. and Minowa, C. (1997), “Soil-Pile-Structure Interaction in Liquefying Sand from Large-Scale Shaking-Table Test and Centrifuge Test,” Seismic Analysis and Design for Soil-Pile-Structure Interaction, Geotechnical Special Publication, No. 70, ASCE, pp. 69-84.
35. Knappett, J. A. and Madabhshi, S. P. G (2005), “Modeling of liquefaction-induced instability in pile groups,” Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
36. Liang, M. and Husein, A. I. (1993), “Simplified Dynamic Method for Pile-Driving Control,” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 4, pp. 694-713.
37. Lin, S.S. (1997), “Use of Filamented Beam Elments for Bored Pile Analysis,” Journal of Structure Engineering, ASCE, pp. 1236-1244.
38. Lin, S. S., Tseng Y. J., Chiang C. C. and Hung C. L. (2005), “Damage of Piles Caused by Laterally Spreading–Back Study of Three Cases,” Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
39. Martin, G. R., Finn, W. D. L. and Seed, H. B. (1975), “Fundamentals of liquefaction under cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT5, pp. 423-438.
40. Mulilis, J. P., Chen, C. K. and Seed, H. B. (1975), “The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC75-18, U.C. Berkeley, Earthquake Engineering Research Center.
41. Matsuzawa, H., Ishibashi, I, and Kawamura, M. (1985), “Dynamic soil and Water Pressures of Submerged Soils,” Journal of the Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1161-1176.
42. MacGregor, J. G. (1988), “Reinforced Concrete: Mechanics and Design,” Prentice Hall, New Jersey, U.S.A.
43. Meyersohn, W. D. (1994), “Pile response to Liquefaction-induced lateral spread,” Doctor’s dissertation, Cornell University, USA.
44. Novak, M. and Beredugo, Y. O. (1972), “Vertical Vibration of Embedded Footings,” Journal of Soil Mechanics and Foundation Division., ASCE, Vol. 98, pp.1291-1310.
45. Novak, M. (1974), “Dynamic Stiffness and Damping of Piles,” Journal of Canadian Geotechnical Engineering, Vol. 11, pp. 574-598.
46. Novak, M. (1977), “Vertical Vibration of Floating Piles,” Journal of Engineering Mechanics Division, ASCE, Vol. 103(EM-1), pp.153-168.
47. Novak, M. and EI Sharnouby, B. (1983), “Stiffness and Damping Constants of Single piles,” Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp. 153-168.
48. Peacock, W. H., & Seed, H. B. (1968), “Sand Liquefaction under Cyclic Loading Simple Shear Conditions,’’ Journal of Soil Mech. Found. Div., ASCE, 94 (SM3), pp. 689-708.
49. Poulos, H.G. (1989), “Cyclic Axial Loading Analysis of Piles in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp. 836-852.
50. Priestley, M. J. N., Seible F. and Calvi, G. M. (1996), “Seismic Design and Retrofit of Bridges,” John Wiley & Sons, Inc.
51. Reese, L. C. (1997), “Analysis of Laterally Loaded Piles in Weak Rock,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 11, pp. 1010-1017.
52. Robertson, P. K., & Wride, C. E., (1997), “Cyclic Liquefaction and It’s Evaluation Based on the SPT and CPT,” Proc. of NCEER Workshop on the Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, pp. 41-88.
53. Smith, E. A. L. (1960), “Pile Driving Analysis by the Wave Equation,” Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 86, No. SM4, pp. 35-61.
54. Seed, H. B. and Peacock, W. H. (1971), “Test Procedures for Measuring Soil Liquefaction Characteristics,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM8), pp. 1099-1119.
55. Seed, H. B. and Idriss, L. M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9), pp. 1249-1273.
56. Seed, H. B., Mori, K., & Chan, C. K. (1975a), “Influence of Seismic History on the Liquefaction Characteristics of Sands,’’ Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
57. Seed, H. B., Martin, P. P., & Lysmer, J. (1975b), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,’’ Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.
58. Seed, H. B. (1976), “Some Aspect of Sand Liquefaction under Cyclic Loading,” Proc., Conference on Behavior of Offshore Structures, Norwegian Institute of Technology, Oslo.
59. Sherif, M. A., Ishibashi, I. & Tsuchiga, C. (1977), “Saturation Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, pp. 914-917.
60. Seed, H.B. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255.
61. Seed, H. B. and Idriss, I. M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,’’ Earthquake Engineering Research Institute, California.
62. Tokimatsu, K. and Yoshimi, Y. (1983), “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fines Content,” Soils and Foundations, JSSMFE, Vol. 23, No. 4, pp. 56-74.
63. Tokimatsu, k. and Asaka, Y. (1998), “Effects of liquefaction Induced Ground Displacement on Pile Performance in the 1995 Hyogoken–Nambu Earthquake,” Special Issue of Soils and Foundations, No. 2, pp. 163-178.
64. Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes,” Procds., 12th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering, Singapore, August.
65. Ueng, T. S. and Chang C. S. (1982), “The Effects of Clay Content on Liquefaction of Fulung Sand,” Soil Dynamics and Earthquake Engineering Conference, Southampton.
66. Yoshimi Y., Tokimatsu K. and Hosaka Y. (1989), “Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples,’’ Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
67. Youd T. L. and Idriss I. M. (1997), Proc. Of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022.
68. Youd T. L. and Idriss I. M. (2001), “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils,’’ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 4, pp. 297-313.
69. 江鈞平 (1984),“壓密與顆粒性質對含微量黏土細砂之液化潛能的影響”,碩士論文,國立台灣大學土木工程研究所,台灣,台北。
70. 鄭文隆,吳偉康 (1985),“土壤液化之災害型態與現地研判”,地工技術雜誌,第9期,第91-103頁。
71. 中華人民共和國 (1989),“建築抗震設計規範GBJ11-89 ”,中國建築工業出版社,北京。
72. 日本道路協會 (1990),“道路橋示方書•同解說,V耐震設計編”。
73. 夏啟民 (1992),“細料塑性程度對台北盆地粉泥質砂液化潛能之影響”,碩士論文,台灣大學土木工程研究所,台灣,台北。
74. 中華民國交通部 (1995),“公路橋樑耐震設計規範”,幼獅文化事業公司。
75. 日本道路協會 (1996),“道路橋示方書•同解說,V耐震設計編”。
76. 葉興鴻 (1996),“轉換輻射阻尼於基樁軸向、側向行為之模擬與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
77. 歐陽金福 (1997),“垂直載重基樁土壤彈簧勁度與阻尼模式研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
78. 林光宗 (1998),“群樁互制效應對基樁反應之影響”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
79. 林新哲 (1998),“考慮混凝土開裂之場鑄樁側向載重分析”,碩士論文,台灣科技大學土木工程研究所,台灣,台北。
80. 黃俊鴻、陳正興 (1998),“土壤液化評估規範之回顧與前瞻”,地工技術,第70期,第23-44頁。
81. 劉祉祥 (1999),“垂直載重群樁之波動方程式時域解”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
82. 周功台、李志剛、廖瑞堂、俞清瀚、余榮生、郭漢興、黃富國、鄭清江 (2000),“液化區基礎修復補強工法對策說明書”,台北市、臺灣省大地工程技師公會,台北。
83. 梁慈婷 (2000),“土壤液化對混凝土之影響”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
84. 張一郎 (2000),“波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
85. 黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。
86. 楊宗勳 (2000),“地震對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
87. 溫展華 (2000),“垂直群樁反應數值解比較研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
88. 中華民國交通部 (2001),“公路橋樑設計規範”,幼獅文化事業公司。
89. 王世權 (2001),“垂直地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
90. 蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
91. 王志煒 (2002),“側向地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
92. 林成川 (2002),“921集集大地震霧峰地區土壤側潰研究”,碩士論文,中興大學土木工程研究所,台灣,台中。
93. 林伯勳 (2002),“群樁受垂直向及側向載重之非線性變形研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
94. 陳銘鴻、陳景文、李維峰、王志榮、辜炳寰 (2002),“簡易液化評估方法之修正與微分區之應用”,土壤液化問題之回顧與展望研討會。
95. 林冠吾 (2003),“層狀土壤中之樁基承載力及變形行為”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
96. 吳宗達 (2003),“樁基波動方程分析之視窗化研究與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
97. 張德文,林伯勳 (2003),“含樁帽及互制影響之波動方程分析”,地工技術雜誌,第九十五期,第49-60頁。
98. 陳明山、段紹緯、黃永和、謝添和 (2003),“高速鐵路橋梁樁基礎設計考量”,The 10 th Conference on Researches in Geotechnical Engineering in Taiwan。
99. 中華民國內政部 (2004),“建築技術規則建築構造編”。
100. 江承家 (2004),“土壤測潰對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
101. 翁作新、陳正興、黃俊鴻 (2004),“國內土壤受震液化問題之檢討”,地工技術,第100期,第63-78頁。
102. 黃鈺雯 (2004),“高雄市土壤液化潛能分析與GIS之資料庫建製”,碩士論文,成功大學土木工程研究所,台灣,台南。
103. 賈志揚 (2004),“波動方程分析網際網路化視窗程式之開發”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
104. 鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
105. 蕭峻銘 (2004),“921地震霧峰、員林、大村、社頭地區液化災損及復舊調查之研究”,碩士論文,中央大學土木工程研究所,台灣,桃園。
106. 林三賢、曾玉如、江承家、李維峰 (2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。
107. 巫秀星 (2005),“液化土壤模數折減下樁基動力反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
108. 愛發股份有限公司 (2005),“ABAQUS實務入門引導”,全華科技圖書股份有限公司。
109. 盧見志,鍾賢慶,黃永和 (2005),“橋樑非維性側推分析”,2005兩岸鐵道工程技術與營運管理學術研討會,台灣,12月,第207~221頁。
110. 中華民國內政部營建署 (2006),“建築物耐震設計規範之解說”,營建雜誌社。
111. 林伯勳 (2006),“樁基礎受液化和地盤側向流動之結構行為分析”,博士論文,淡江大學土木工程研究所,台灣,淡水。
112. 黃俊鴻、鍾明劍 (2006),“液化流動壓作用下側向樁之簡化解析解”,中國土木水利工程學刊,第十八卷,第四期,第465-474頁。
113. 中華民國交通部 (2007),“鐵路橋樑耐震設計規範”。
114. 郭治平 (2007),“液化潛能指數PL使用時可能產生之問題探究”,蘭陽學報,第六期,第22-31頁。
115. 張紹綸 (2008),“孔隙水壓模式應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信